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ABSTRACT

Federated Learning (FL) is emerging as an essential mecha-
nism for assuring user privacy in large-scale machine learning
(ML) [1]. Important use-cases of this learning paradigm run
on a federation of real-world user devices, but in the litera-
ture, FL is often simulated in an artificial computing cluster
environment [1, 2, 3]. Seeking to capture the unique FL prob-
lems and trade-offs when running on physical hardware, we
set up 20 Raspberry Pi’s acting as user devices. Using this
experimental setup, we perform an empirical study of the in-
fluence of key hyperparameters of the FedAvg [2] algorithm.
In the case of the number of local epochs on clients, the physi-
cal timings allow us to identify a trade-off between time spent
on communication and local computation. Testing robustness
against imbalanced data across the clients and noisy data, we
highlight the potential of using stronger aggregation schemes
than weight averaging by implementing the FedDF [3] algo-
rithm.

1. INTRODUCTION

Large-scale surveys have shown that the growing use of Arti-
ficial Intelligence (AI) has resulted in a widespread fear of
loss of personal privacy [4, 5]. As part of a general push
towards safer AI, large tech companies such as Google and
Apple have employed FL methods in cases including Siri,
Google Chrome, and Gboard [1].

The term FL covers distributed ML setups where multiple
clients collaborate in learning from local datasets which are
not exchanged and where a central server aggregates local
updates [1, 2]. Aggregation by iteratively averaging weights
from models, each produced by training for several local
epochs on each client, is known as the formative FedAvg [2]
algorithm. For faster and more stable convergence, additional
aggregation methods have been developed, including the en-
semble distillation algorithm FedDF [3]. We refer to Kairouz
et al. for an overview of the field [1].

Across this rich literature, many benchmarks of FL perfor-
mance over algorithmic choices exist but are often performed
by simulating the federation on central compute clusters [3].
In this project, we seek to capture the unique hardware setup
of FL use-cases such as smartphones, where a number of
computationally weak edge devices hold the data. This is

achieved by performing local training of a convolutional neu-
ral network (CNN) on 20 Raspberry Pi devices over which
CIFAR-10 [6] is divided and aggregating these locally trained
models centrally using FedAvg. The project aims to inves-
tigate the impact of FedAvg hyperparameters, including the
number of clients per communication round and local epochs
on convergence time, analyse aggregation robustness against
imbalanced and noisy data, and uncover performance trade-
offs in the physical hardware setting.

2. METHODS

2.1. FL Methods

We implemented FL by setting up K clients each with a dis-
joint training dataset partition of size nk. A global model,
MG, was initialised and maintained on the central server,
and for L rounds, dubbed communication rounds, S ≤ K
clients were sampled, each receiving a copy of MG. Each
client performed E local epochs of learning before returning
the updated local modelMk to the server.

In FedAvg, the server aggregated the S returned models
by averaging over all model weights, yielding a new global
model to be sent out for the next communication round, min-
imizing an implicit objective function f of model weights w
when using loss function ℓ:

f(w) =

K∑
k=1

nk

ntotal
Fk(w), Fk(w) =

1

nk

nk∑
i=1

ℓ(xi, yi;w),

in which Fk(w) is the objective of the k’th client [2].
For an alternative aggregation method, we implemented

the FedDF algorithm, where the FedAvg’s weight averaging
is replaced by running ensemble distillation for model fusion
using an unlabeled dataset similar to the training datasets [3].
Copying the hyperparameters from [3],M(l+1)

G was produced
by distilling the S local models M(l)

ki
for 104 batch updates

against a Kulback-Leibler (KL) divergence criterion with a
batch size of 128 and a learning rate of 10−3 used for Adam
optimization with cosine annealing [7, 8]. Early stopping was
implemented by calculating the KL divergence against an un-
labeled validation set every 103 updates and terminating if
evaluation loss did not fall (further described in Appendix C).
The CIFAR-100 dataset was used for distillation [6].



2.2. Physical Devices

The project setup, shown in Figure 1, was divided into two
parts A central high-performance cluster (HPC) and 20 Rasp-
berry Pi 3B’s, each with 1 GB memory and a quad-core 1.2
GHz CPU. Crucially, the Pi’s were located on a network sep-
arate from the HPC to simulate a more realistic communica-
tion overhead. The HPC server was responsible for aggre-
gating the local models trained by the Pi’s and evaluating the
resulting global modelMG. The code was designed not to re-
quire physical devices, so experiments without hardware tim-
ing were run on an NVIDIA A100 for faster training time and
a reduced power bill.

Every Pi ran a Flask server that transferred models, ran
local training and broadcast running memory usage; an im-
portant consideration when running on such resource-limited
devices. The Flask server also had a route for sending com-
mands to allow primitive over-the-air-update functionality.

The Raspberry Pi setup was able to run experiments
where K > 20, that is, maintaining more than 20 clients and
thus dataset partitions with the constraint of no more than 20
clients being sampled each round: S ≤ 20. This was done
by storing all K client datasets on every device, and in each
communication round l, assigning each of the S sampled
client datasets to a Raspberry Pi.

The Pi’s were connected to a switch which was connected
via cable to the router. When turning off the switch, the Pi’s
were set to connect via Wi-Fi instead, allowing tests of the
impact of communication overhead in two cases: under rela-
tively fast Ethernet and relatively slow Wi-Fi. For reference,
the network used had a bandwidth of 100/100 Mbit/s, all of
which was utilised on Ethernet, but only about 40% on Wi-Fi.

HPC server

Pi 1 . . . Pi 20

M(l)
G M(l)

G

M(l)
ki

M(l)
kj

Data ki Data kj

Fig. 1. Our federated setup performing updates at commu-
nication round l, at which S ≤ 20 clients are sampled, each
corresponding to a dataset partition k1 . . . kS . Raspberry Pi 1
trains a model as client ki, and Raspberry Pi 20 as kj .

2.3. Deep Learning Problem

As an example learning problem, we chose the CIFAR-10
computer vision (CV) task of classifying 32× 32 images into
object classes such as birds, cats, and aeroplanes [6]. Due to
device memory limits, all images were greyscaled. The train-
ing dataset contains 5K images for each of the 10 label.

For the model M, we chose a network with two convo-
lutional layers followed by two linear layers, which is further
detailed in Appendix A. The model was limited in size to ac-
commodate the strict memory limits on the Raspberry Pi’s.

Optimization for the E local epochs on each device was
performed by using the Adam optimizer [8] with a learning
rate η, which was decayed every local epoch: η ← γη, γ ≤ 1.

2.4. Data Imbalance and Noise

2.4.1. Dirichlet sampling

The total training dataset was divided into K evenly sized
partitions among all the clients. In practice, dataset class bal-
ance can rarely be assumed in the FL setting [1]. In order to
simulate varying levels of imbalance, the Dirichlet distribu-
tion, Dir(α), was used. The length of the parameter vector α
corresponds to the number of labels, 10, and we let αi = α.
Every sample π ∼ Dir(α) is a probability distribution over
labels and α determines the uniformity of this distribution.
For α→ 0, one label dominates, where as for α→∞, π will
be increasingly uniform, as exemplified in Appendix B.1. For
α = 1, every possible π is equally likely.

π was sampled for every client, making the label distri-
bution Dirichlet for every client. To keep the client datasets
disjoint while using a maximal part of the total dataset, we
created a client-balancing Dirichlet sampling algorithm de-
scribed in detail in Appendix B.2.

As a comparative baseline, we also simulate random par-
titions, denoted iid. following literature [3].

2.4.2. Noisy data

To simulate the fact that some user devices can be unreliable,
we tested the concept of noisy clients. The training data on
a noisy client had all labels replaced with randomly chosen
classes, removing all signal. We tested performance over the
number of noisy clients NK ≤ K to simulate erroneous or
even adversarial clients.

2.5. Evaluation

We performed experiments using FedAvg testing the effects
of four variables: The number of clients sampled (S), the
class balance (α), the number of local epochs (E) and the
number of noisy clients (NK). Furthermore, the experiments
regarding class balance and noisy clients were also run using
the FedDF algorithm.

The experiments varying local epochs were repeated on
the physical federation of Raspberry Pi’s, both on Ethernet
and Wi-Fi. This was chosen because altering this parameter
changes the runtime of each communication round, while the
behaviour for other tested parameters was approximately the
same whether using the number of communication rounds or
wall time as the x-axis.



All experiments used the baseline listed in Table 1 ex-
cept for the parameter being varied in each experiment. These
were chosen based on existing literature, in particular, [2, 3],
and limited pilot experimentation.

K S α E L NK B η γ
40 20 1 20 20 0 16 5 · 10−4 0.995

Table 1. Baseline parameters used for all experiments. Here,
B refers to the training batch size.

3. RESULTS

Figure 2 shows the experiments run on the Pi setup. Note that
these experiments are limited by time and have thus run dif-
ferent numbers of communication rounds. Table 2 shows the
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Varying Local Epochs on WiFi
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Fig. 2. Effect of the number of local epochs (E) using the
Raspberry Pi setup on ethernet (top) and Wi-Fi (bottom). The
lines show the mean accuracy of three repetitions, while the
shaded areas outline the at any time best and worst of the
repetitions. The legend also displays the number of rounds
(L) each experiment completed before a timeout of 50 min.

results of repeated experiments investigating different param-
eter choices after L = 20 communication rounds.

Local epochs (E)
1 10 20 40
48.0± 0.9 52.2 ± 2.0 37.6± 2.4 22.2± 2.0

Clients samped (S)
5 10 20 40
35.4± 4.8 37.4± 2.6 38.1 ± 2.0 38.1 ± 2.5

Class balance (α)
0.01 1.0 100.0 iid.
10.3± 0.6 36.7± 2.4 42.6± 3.4 43.4 ± 2.5

FedDF: Class balance (α)
0.01 1.0 100.0 iid.
9.9± 0.2 55.8± 0.1 56.5± 0.9 58.3 ± 1.0

Noisy clients (NK)
0 10 20 30
37.1 ± 1.3 14.0± 2.1 10.3± 0.4 10.6± 0.8

FedDF: Noisy clients (NK)
0 10 20 30
54.5 ± 0.4 52.0± 2.9 51.6± 1.9 42.9± 0.3

Table 2. Final test accuracies [%] of FL models over
K = 40 clients when running for fixed L = 20 communi-
cation rounds. Where nothing else is stated, parameters cor-
respond to Table 1. Each run is repeated five times to produce
an approximate 95% confidence interval.

4. DISCUSSION

Firstly, the results show that model convergence is possible
even though data is distributed across devices; a conclusion
substantiated by the fact that continuing the E = 1 training
resulted in 95 % of centralised learning performance which is
shown in Appendix Table 3.

From the Raspberry Pi experiments on Figure 2, we ini-
tially note that many accuracy curves fall during much of
the learning. This effect is continually worse with more lo-
cal epochs. We attribute this problematic behaviour to over-
fitting towards training sets, and, to check this explanation,
visualise test performances during local epochs on Figure 3.
Here, training accuracy on each client skyrockets during local
epochs while the training accuracy plummets. The direct miti-
gation is to perform a structured hyperparameter search where
better regularising measures for this task are tested. A more
general idea is to perform local early stopping, but designing
such a rule is non-trivial as we observe examples of the global,
average model improving even though all local models over-
fit, as seen in early communication rounds and during the less
biased learning for E = 10 shown on Appendix Figure 6.

When focusing on early learning less impacted by over-
fitting, the Raspberry Pi timing results reveal that it does not
always hold that fewer local epochs are better. More local
epochs can be optimal if training time is limited, as seen in
minutes 5 to 15 using Ethernet and minutes 5 to 40 for Wi-Fi.
During this time, the higher number of local epochs result in
more time spent on training and less on communication, ex-



plaining why the this effect is most evident on relatively slow
Wi-Fi. There thus exists a trade-off where E should not be
too high to induce overfitting but not too low to slow down
the rate of training data seen. When choosing this parameter,
practitioners should be mindful of available training time and
communication latencies in the system.
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Fig. 3. A training trajectory when recording running accura-
cies on each client in each communication round where each
faint line corresponds to E = 20 local epochs performances
of each of the S = 20 sampled clients. For the E = 10 case,
see Appendix Figure 6.

When running for a fixed number of rounds, as shown in Ta-
ble 2, computational and communicational effects are disre-
garded, and E = 10 appears optimally as a compromise be-
tween under- and overfitting. For the number of clients sam-
pled each round S, we note that even though datasets are
somewhat imbalanced, α = 1, FedAvg performs the same
both when sampling half of the clients and when sampling all
of the clients. Even using only five clients each round, the
accuracy ended at 93 % of all 40, emphasising the stability
of model averaging. This difference is largest in early rounds
where lower values of S induce slower convergence, also vi-
sualised in Appendix Figure 7.

However, the class balance results show that this stabil-
ity was removed when lowering α to 0.01. The learning im-
proved significantly when training on more balanced classifi-
cation tasks such as α = 100 or iid.

For the FedDF experiments with the same hyperparame-
ters, a generally much higher level of performance is noted.
We speculate that the distillation procedure avoids the detri-
mental impact of the overfitted local models by performing
a model fusion without averaging over big, bias-inducing pa-
rameters. This is backed up by Figure 4 where the problem of
long-term falling performance is removed when using FedDF.
Empirical prediction probability distributions might thus give
a more robust characteristic of the learned knowledge than the
model weights themselves.
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Fig. 4. Performance of the global model on the test set over
communication rounds when varying data imbalance using
both FedAvg (left) and FedDF (right). The lines indicate the
mean performance of multiple runs, with the coloured areas
outlining the least and most performant repetition at any run.
The FedAvg experiments were repeated five times, with the
much slower FedDF experiments only being run twice.

This added robustness is strongly exemplified for FedDF in
the noise experiments. Here, having 10 out of the 40 data
partitions being noisy ruins the performance of FedAvg thor-
oughly, while FedDF can perform reasonably even at 30 out
of 40. Yet again, averaging probabilities instead of model
weights appears to minimise the negative impact of fusing
models with heterogeneous parameter values.

Though data label difference was simulated, use-cases
such as smartphone computer vision or virtual keyboard lan-
guage modeling have user data distributions that are much
more diverse, e.g. one user only photographing their dog
and another only landscapes, requiring analysis of data vari-
ety. In addition to these learning considerations, practitioners
should be aware of the fact that FL is not the entire solution
to user privacy as user data might be recoverable from trained
models weights. To mitigate this, FL can be combined with
differential privacy methods [9] to obtain maximally safe
learning.

4.1. Conclusions

The case study performed in this project demonstrated that
privacy-preserving learning on physical devices is possible as
long as algorithmic choices are made with communication ef-
ficiency and robustness against data imbalance in mind. Us-
ing the simple, foundational FedAvg algorithm, running more
local training on devices raised overfitting, but fewer epochs
raised communication overhead. The distillation aggregation
algorithm FedDF mitigated this overfitting and added robust-
ness towards different data distributions at the cost of more
computation on the central server. To investigate multiple re-
alistic learning tasks, including computer vision models with
higher performance, a federatio of devices with more comput-
ing power than Raspberry Pi’s, such as smartphones, could be
subject to the same analysis.
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A. MODEL

The model architecture is described below, listing the sequen-
tial operations in the forward pass.

Layer type Hyperparameters
2D Convolution 1 in-channel, 16 out-channels, 3×3

kernel, stride of 1
ReLU activation
2D Convolution 16 in-channels, 32 out-channels,

3× 3 kernel, stride of 1
ReLU activation
2D MaxPooling 2×2 kernel, stride of 2, no padding,

dilation of 1
Dropout p = 25%
Flattening
Linear w. bias 6, 272 features in, 64 features out
ReLU
Dropout p = 50%
Linear w. bias 64 features in, 10 features out

B. THE DIRICHLET DISTRIBUTION FOR DATA
IMBALANCE

B.1. Impact of Dirichlet α

Se Figure 5 for illustration of varying degrees of data imbal-
ance.
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Fig. 5. Example 10-class label distributions over 50 clients
for each of the tested sampling paradigms, where each colour
corresponds to a label and each row to a client.
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B.2. Sampling Algorithm

Let D denote a dataset of size |D| with l different labels, of
which there are |D| /l each. The goal of the algorithm is to
divide the dataset among C clients, such that the label distri-
bution, πi of each client i, follows the same Dirichlet distri-
bution, Dir(α), where every αj ∈ α, j = 1 . . . l is the same
value. For simplicity, the Dirichlet distribution will therefore
be parametrized only by α; Dir(α).

The distributions are structured into a matrix P of size
C× l, where the i’th row is πi. The ij’th element, Pij , is then
the fraction of label j on device i. Furthermore, the sum of the
j’th column is the relative usage of label j scaled by the num-
ber of clients, C. As such, for every label to be used equally
much, every column should sum to C/l. If any columns sum
to more, the corresponding labels are oversampled, and so all
of P needs to be normalized to make the largest column-sum
equal C/l, causing some of the data to not be used.

A measure, u, is needed to determine how close P is to
achieving the goal of making every column sum to the same.
The lowest value of this measure should be achieved for a
P where every column sums to C/l, while it should be pro-
gressively higher for poorer P’s. We chose the L1 norm of
difference in column sums and C/l:

u(P) =

l∑
j=1

∣∣∣∣∣Cl −
C∑
i=1

Pij

∣∣∣∣∣
Similarly, standard deviation or the reciprocal of the entropy
could be used.

The final thing to keep in mind before the algorithm is
introduced is that reordering πi makes it equally likely to be
sampled from Dir(α).

The algorithm changes the ordering within each πi iter-
atively, until u(P) is no longer lowered. The full algorithm
is shown with pseudocode in Algorithm 1. The final P pro-
duced by the algorithm is normalized such that all data points
with the most sampled labels are used exactly once.

In general, labels were found to be sampled more evenly
for higher values of C and α. Running the algorithm for
C = 100 and α = 0.01 100 times showed an average un-
dersampling of less than 1 % with the largest undersampling
being 3.3 %. Only rarely was any one label undersampled by
more than 5 %, a sign of the strength of the algorithm, even
for a low value of α.

C. KL DIVERGENCE IN FEDDF

The KL divergence measures the distance from one distribu-
tion, Q, to a reference distribution, P . Let P and Q be dis-
crete distributions defined on the probability space X . The
KL divergence is then defined as

DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)

Algorithm 1 Dirichlet sampling algorithm
for i from 1 to C do ▷ Initialize P

Pi ← Dir(α)
end for
loop

d←Map() ▷ Map swaps to u values
for i from 1 to C do ▷ Do all possible swaps

for all (j1, j2) ∈ (1 . . . l)× (1 . . . l), j1 ̸= j2 do
Swap Pij1 and Pij2

d[(i, j1, j2)]← u(P)
Swap Pij1 and Pij2 back

end for
end for
if min(d) < u(P) then

i, j1, j2 ← argmin(d)
Swap Pij1 and Pij2

else
Break ▷ No improvement possible

end if
end loop
π ←

∑C
i=1 πi

P← P/max(π) ▷ Normalize P by most sampled label

A key property is DKL(P∥Q) = 0 ⇔ P = Q. However, the
divergence is not a metric on the space of probability distri-
butions, as in general DKL(P∥Q) ̸= DKL(Q∥P ).

In the context of FedDF, the KL divergence uses the prob-
ability predictions of the student (or central) model as Q,
while the target probabilities are used as the reference distri-
bution P . The target probabilities are defined as the softmax
of mean logits of the teacher models. The exact process is
described in more detail by Lin et al. [3]

D. FURTHER RESULTS
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Fig. 6. A version of 3 with E = 10.



Algorithm Steps before convergence Final accuracy
FedAvg 200 comm. rounds 62.1 %
Centralised 10 full epochs 65.3 %

Table 3. Test set accuracy when running the above learn-
ing algorithms until test set accuracy stopped improving for
3 steps. The used FedAvg algorithm used E = 1 and oth-
erwise baseline parameters presented in 1. The centralised
learning algorithm used the full training each epoch, but oth-
erwise same optimization approach as FL.
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Fig. 7. Performance of the global model on the test at dif-
ferent communication rounds with varying number of clients
sampled per round, S. The lines indicate the mean perfor-
mance of five runs, with the coloured areas outlining the least
and most performant repetition at any run.
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