
DaLUKE:

The Knowledge-enhanced, Danish

Language Model

Technical University of Denmark

Bachelor’s Project in Artificial Intelligence and Data

Søren Winkel Holm Asger Laurits Schultz

s183911@dtu.dk s183912@dtu.dk

Supervisors:

Lars Kai Hansen, DTU Compute

Michael Riis Andersen, DTU Compute

Victor Elkjær Birk, IBM Services

June 28, 2021



Abstract

The advent of deep learning has led to significant advances in the field of natural lan-

guage processing in recent years, but many models, while good at modeling language,

lack explicit knowledge, making tasks involving real-world, factual entities challenging.

LUKE, proposed by Yamada et al. in October 2020, is a transformer-based architec-

ture that explicitly models entities, allowing it to achieve state of the art on several

benchmarks, including named entity recognition (NER). In this report, LUKE’s English

NER results are reproduced along with leading Danish NER results, and an open source

Danish LUKE, DaLUKE, is produced. Firstly, a general, pretrained model for produc-

ing contextualized word and entity representations is released. Secondly, a model is

presented which is trained on the central Danish NER dataset, DaNE, achieving close

to state of the art and slightly outperforming BotXO’s Danish BERT, though within

margin or error. Several ablation studies are conducted to explore what effects different

techniques have on performance. Finally, an open source software package, daluke, is

released with the goal of making knowledge-based deep learning for Danish easy to use.



Preface

This project has been completed to fulfil the requirements to obtain the bachelor’s

degree in Artificial Intelligence and Data at the Technical University of Denmark.

Per author, the project was assigned a workload of 15 ECTS corresponding to ap-

proximately 420 working hours. The software presented in the project is available at

github.com/peleiden/daluke.

We are incredibly grateful for the large amount of help we received from DTU and

broadly from Danish natural language processing practitioners. Obligatory mentions

include Rasmus Arpe and Martin Nielsen from Danspeech, Finn Årup Nielsen from

DTU Compute, and Kasper Lindskou and Lukas Nielsen from Ekstra Bladet Analyse

for valuable advice, especially on data concerns. We are also grateful for the help

of Ikuya Yamada, Studio Ousia for publishing LUKE and openly answering all our

questions on modeling details.

A special thank you goes out to Johannes Kruse for continuous feedback and insight.

All of our three supervisors gave us invaluable guidance and encouragement crucial for

the project. We would never have learned so much about this exciting field without the

ambition and motivation of Lars Kai Hansen.

Finally, we note that this project presents text examples in Danish that are not

translated to English. A report meant for a broader audience would require such trans-

lations.

Page 1 of 89

https://github.com/peleiden/daLUKE


Abbreviations

AI Artificial intelligence

AMP Automatic mixed precision

BPE Byte-pair encoding

CER Contextualized entity representation

CRF Conditional random field

CWR Contextualized word representation

FN False negative

FP False positive

GLUE General Language Understanding Evaluation

IOB Inside-outside-beginning

KB Knowledge base

KG Knowledge graph

LM Language model

MLM Masked language model(ing)

NE Named entity

NER Named entity recognition

NLP Natural language processing

PCA Principal component analysis

RNG Random number generation

SB Sub-batch size

SOTA State of the art

STLR Slanted triangle learning rate

TN True negative

TP True positive

UD-DDT Universal Dependencies of Danish Dependency Treebank

Page 2 of 89



Contents

1 Introduction 6

1.1 The Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Theory and State of the Art 8

2.1 Named Entity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Embeddings, Tokenization, and the Transformer . . . . . . . . . . . . . 9

2.3 Deep Natural Language Processing in Danish . . . . . . . . . . . . . . 12

2.4 Deep, Knowledge-enhanced NLP . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Static, Separate Knowledge Graphs . . . . . . . . . . . . . . . . 14

2.4.2 Pretraining Augmentations . . . . . . . . . . . . . . . . . . . . . 15

2.5 LUKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Pretraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.3 Fine-tuning for Named Entity Recognition . . . . . . . . . . . . 21

3 Data 22

3.1 Entity-annotated Danish Wikipedia . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Entity Augmentations . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Named Entity Recognition Benchmarks . . . . . . . . . . . . . . . . . . 24

3.2.1 Danish Named Entity Recognition Datasets . . . . . . . . . . . 24

3.2.2 CoNLL-2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Annotation Schemes: What Do The Tags Mean? . . . . . . . . 27

4 Methods 28

4.1 Benchmarking Named Entity Recognition . . . . . . . . . . . . . . . . 28

4.1.1 Evaluation of Named Entity Recognition . . . . . . . . . . . . . 28

4.1.2 Fine-tuning English LUKE . . . . . . . . . . . . . . . . . . . . . 30

4.1.3 Off-the-shelf, Danish models . . . . . . . . . . . . . . . . . . . . 31

4.2 DaLUKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Page 3 of 89



Contents Technical University of Denmark

4.2.1 Pretraining Methodology and Hyperparameters . . . . . . . . . 32

4.2.2 Fine-tuning DaLUKE for Named Entity Recognition . . . . . . 34

4.2.3 Implementation Details and Open Source Software . . . . . . . 36

5 Results 39

5.1 English LUKE Reproduction . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Pretraining of DaLUKE . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Danish Named Entity Recognition . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Main Benchmark: Our Results and Reproduction . . . . . . . . 42

5.3.2 Additional Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Experiments and Discussion 45

6.1 What Is Going on in the Pretraining? . . . . . . . . . . . . . . . . . . . 45

6.1.1 The Parameter Population . . . . . . . . . . . . . . . . . . . . . 45

6.1.2 Effect of More Pretraining . . . . . . . . . . . . . . . . . . . . . 46

6.1.3 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.4 Entity-aware Self-attention . . . . . . . . . . . . . . . . . . . . . 49

6.1.5 Dataset Augmentation . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.6 Impact of Danish BERT . . . . . . . . . . . . . . . . . . . . . . 51

6.1.7 Entity Vocabulary Size . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Fine-tuning Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.1 Stability of LUKE Fine-tuning . . . . . . . . . . . . . . . . . . . 55

6.2.2 Class-weighted Loss . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.3 Feature Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Predictions: What Is Learned? . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.1 Masked Language Predictions . . . . . . . . . . . . . . . . . . . 60

6.3.2 DaLUKE Representations: The NER Geometry . . . . . . . . . 61

6.3.3 When the Model is Wrong . . . . . . . . . . . . . . . . . . . . . 68

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Conclusion 77

Bibliography 78

Page 4 of 89



Contents Technical University of Denmark

A Result Details 85

A.1 Experiment: No Weight Fixing in Pretraining . . . . . . . . . . . . . . 85

A.2 Fine-tuning Hyperparameter Search Results . . . . . . . . . . . . . . . 86

B Additional Figures 87

B.1 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 87

.

Page 5 of 89



1. Introduction

The rapid development of artificial intelligence (AI) seen in the last decade is not just

one of research. The applied field sometimes called data science or AI engineering

has brought emerging intelligent technologies to industry, resulting in AI playing a

significant role in society. This data-driven wave of AI has been led by the subfield that

deals with statistical learning such as deep neural networks, while symbolic methods

using explicit knowledge have been less influential [LBH15, p. 1]. The successful societal

impact of these statistical methods that include deep learning is, however, conditioned

on the availability of big data and substantial computing resources, resulting in high

resource domains receiving most of the benefit of AI.

A clear example of this issue is the important field of natural language processing

(NLP) that attacks the difficult task of understanding human language, one of the

distinguishing aspects of our intelligence. NLP based on statistical methods from AI has

in recent years taken sizable strides towards this understanding as large-scale models

with names such as GPT-2, GPT-3, BERT, RoBERTa, ELMo, and T5 have gained

public attention and being put to use. The data hunger of these models results in

languages with low amounts of available data, dubbed low resource languages, lacking

severely behind in technical results and thus practical use of NLP. To avoid these regions

falling behind in the AI race, these languages, that include Danish, have seen a growing

trend of attention from the literature resulting in a diverse set of methods attempting

to learn in the data sparse case [Hed+21].

One such possible mitigation is to let the statistical approach be influenced by ex-

plicit modeling of knowledge. In this project, language understanding in Danish will

be attempted using a new deep learning technique for NLP that succeeded with this

modeling approach in English. The model, Language Understanding Using Knowledge

Embeddings (LUKE), was released in October of 2020 and explicitly handles the dif-

ference between single words and named entities such as ”Lionel Messi”, ”The United

States of America” and ”Science” [Yam+20]. The model had in total seen training

from 160 GB of text1.1 and achieved state of the art (SOTA) results on classic NLP

Page 6 of 89



Introduction Technical University of Denmark

tasks such as named entity recognition (NER). For Danish, the amount of suitable

data for this technique is about 40 times smaller1.2. It is the goal of our project to

present a maximally performant and open source Danish LUKE for use of Danish NLP

practitioners while also taking this challenge as a case study of deep natural language

processing for low resource languages.

1.1 The Project

Apart from the practical task of releasing a usable, open source Danish LUKE model

(DaLUKE), the project seeks to answer the following research questions:

1. Can both the English LUKE NER result and previous Danish NER results be

reproduced, and how does the DaLUKE performance and predictions compare to

this Danish SOTA?

2. Do the new knowledge-based methods proposed by the LUKE paper raise the

level of natural language understanding of the used Danish model?

3. What methods in the applied data engineering pipeline and the knowledge-enhanced

pretraining task are important for the final DaLUKE results?

In the following chapter, the central task of NER will be introduced, and related mod-

els within both Danish and general, knowledge-enhanced NLP will be discussed, before

introducing LUKE. In Chapter 3, the used datasets and our augmentation of these

are introduced. Then, Chapter 4 documents the actions taken to pretrain and fine-

tune DaLUKE and to reproduce existing results. Here, the released software package

daluke will also be introduced. The NER results of DaLUKE and reproduced Danish

models are shown in Chapter 5 along with DaLUKE pretraining results. In Chap-

ter 6, approaches for understanding the results are shown, including ablation studies

on the training method and analysis of model predictions. Finally, project outcomes

are summarized.

1.1This includes all training that affected the final model weights and thus also the data used to
pretrain RoBERTa [Liu+19, Sec. 3.2], the weights of which were used for initializing most of the
LUKE weights. Counting only the data used for LUKE itself, the number is not directly reported but
was found to be around 7 GB from our experiments with the English LUKE data pipeline.

1.2The pretraining method uses the special format of Wikipedia. The English Wikipedia dump used
by LUKE contained 3.5 billion words [Yam+20, App. A], while the Danish Wikipedia consists of 81
million words.

Page 7 of 89



2. Theory and State of the Art

With the advent of deep learning in the field of NLP, models have risen massively

in complexity, requiring ever more compute and data. For instance, LUKE required

30 days of training on 16 NVIDIA V100’s [Yam+20], and that model already took

advantage of RoBERTa, which was even more demanding to train [Liu+19]. For this

reason, the training of a deep NLP model is typically divided into two separate tasks:

First, the pretraining, in which a model is trained that has limited direct practical

use but has general language understanding. Secondly, a fine-tuning, or downstream

training, is performed in which the pretrained model undergoes further, specialized

training for some specific language task, e.g. NER.

2.1 Named Entity Recognition

NLP has the broad goal of algorithmically understanding languages such as Danish or

English. To quantify this abstract ideal, understanding is often measured in perfor-

mance on a set of well-defined challenges that are expected to require general language

knowledge. One such challenge is the task of recognizing named entities (NE), real-

world objects with rigid definitions such as specific persons, locations, organizations,

events, products, etc. The problem of NER is to produce an algorithm that can, given

a string of characters designating a document of natural language, return an annotation

that ascribes, to each word in the document, both whether the word is a part of a NE,

and what category of NE the word corresponds to [Wik21]. For the string

”Caesar marched on Rome, defying the Senate of the Roman Republic.”,

a correct result could be

• Caesar is a person,

• Rome is a location,

• the Senate of the Roman Republic is an organization,

• and all other words are not part of named entities.

Page 8 of 89



Theory and State of the Art Technical University of Denmark

There are multiple ambiguities in this formulation of the problem, but this is a common

issue for the problem, as the set of NE types varies between benchmarks. Furthermore,

the very definition of a NE is unsettled with possible answers including proper nouns,

rigid designators, and unique identifiers [Mar+13, Sec. 4]. For the benchmarks used in

this project, the NE categories and annotation formats are introduced in Section 3.2

while the evaluation of the performance of NER algorithms is discussed in Section 4.1.1.

NER is not just used as a benchmark for language understanding: In the applied

field of information retrieval, semantic annotation and question answering systems rely

on NER to control the information focus [Mar+13, Sec. 2]. This task of both research

and practical interest was defined in the 1990s and has been active and competitive,

especially in English where SOTA methods achieve close to human performance on

some classic benchmarks [Wik21; Mar+13]. Researchers argue, however, that the task

is not yet solved as statistical algorithms fitted to a certain NER dataset often generalize

poorly to new examples [Mar+13, Sec. 7.2].

The SOTA on English NER benchmarks moves quickly, but almost all algorithms

currently (June 2021) achieving high scores in common benchmarks are deep neural

networks and of the transformer architecture in particular [Rud21; Con21].

2.2 Embeddings, Tokenization, and the Transformer

Word embeddings Word embeddings are one of the most ubiquitous tools in the

NLP toolbox and come in many variants, all sharing the general idea of mapping a word

token to a real-valued vector representation corresponding to a semantic condensation

of the word. When using the term embeddings, we refer to the static, un-contextualized

representations such as the fasttext-based, 300-dimensional, Danish embeddings re-

leased by Edouard Grave et al. [Gra+18].

One of the challenges in language modeling is that many words change their mean-

ing completely depending on the context in which they appear. Consider, for instance,

the sentences ”The mouse and the elephant” and ”Please left-click using the mouse”.

”mouse” appears identically in both sentences, but with widely different meanings,

which static embeddings have a hard time modeling. In the latent space of the embed-

dings, one would expect ”mouse” to be close to other species from the animal kingdom,

but also close to computer parts. This would in turn cause computer parts to be

placed close to animals, which is not ideal. This issue with embeddings is where the

transformer comes in.

Page 9 of 89



Theory and State of the Art Technical University of Denmark

The Transformer Introduced by Ashish Vaswani et al. in 2017 [Vas+17], the goal of

the transformer is to produce contextualized word representations (CWR) given static

but learned embeddings. CWRs are similar to embeddings in that they are real-valued

vector representations of words, but they also take the document context into account.

Transformers are not the first attempt to solve this problem of producing effective

CWRs. Such general-purpose, pretrained models producing CWRs are called contextu-

alized word representation language models or general-purpose language models [Bir20,

Ch. 2] and will in this project be referred to simply as language models (LM). Older

architectures such as recurrent neural networks [GBC16, Ch. 10] and in particular long

short-term memory networks [HS97] have yielded strong results, but we argue that they

have three key weaknesses: Firstly, they only include context up to the given word, and

secondly, they struggle with long-term dependencies due to their sequential nature re-

sulting in poor information preservation [GBC16]. Finally, the sequentiality of their

calculations also limits how parallelized training and inference can be. The first issue

has been solved by the introduction of bi-directional versions of these network types

[SP97]. The second issue of long-term dependencies and the third of parallelizability is

what the transformer seeks to tackle.

Both of these issues are solved by the attention mechanism. Instead of sequentially

letting each token update the state, the relevance of all tokens to all other tokens are

calculated simultaneously, which can be done in parallel without losing any information

to an iterative state update. This is exemplified at figure 2.1, right.

The transformer uses an encoder-decoder structure with the encoder producing the

CWRs. The encoder is made of several attention blocks feeding into each other with

feed forward networks and layer normalizations in between. Each of the attention blocks

is made up of three learnable components: the query, key, and value matrices. The word

embeddings are structured in a single matrix with token embeddings in the rows and

are multiplied with the three matrices before the attention scores are calculated. This

allows every token to be considered simultaneously, independently, and equally, solving

both the described issues. [Vas+17]

Page 10 of 89



Theory and State of the Art Technical University of Denmark

Figure 2.1: On the left, a simple visualization of an attention block, a single component
computing representations, is shown. The right image exemplifies attention between
all words as the BERT encoder computes it.2.2

Models based directly on the transformer have been trained on very large corpora to

produce English language models such as BERT (Bidirectional Encoder Representations

from Transformers) [Dev+19], RoBERTa, [Liu+19] and GPT-3 [Bro+20] that have

achieved SOTA in several downstream language tasks. BERT is the first model to use

the masking pretraining objective as it is employed by LUKE. Early transformer-based

models such as OpenAI’s GPT [Rad+18] use a unidirectional pretraining task, letting

only tokens appearing to the left of the token to predict have any impact. BERT instead

masks some tokens in the given sequence and allows all tokens to attend to all other

tokens when predicting the masked ones – this is what is known as a masked language

model (MLM). BERT achieved SOTA many downstream tasks such as the important

question answering task and has been described as revolutionary for its impact on

NLP [Raj19]. RoBERTa is a newer pretraining using the same architecture as BERT

[Liu+19].

Tokenization The input for these language models must naturally be sequences of

words. A näıve approach is to regard all unique words seen in the corpus as tokens.

However, the fact that multiple possible augmentations of the same word can be met,

makes this a suboptimal method. A verb, for example, still carries much of the same

2.2The left image is produced by Jay Alammar in ”The Illustrated Transformer”,
jalammar.github.io/illustrated-transformer/. The right is a product of the Ten-
sor2Tensor visualization tool produced by Llion Jones and used for BERT by Jesse Vig
in ”Deconstructing BERT”, https://towardsdatascience.com/deconstructing-bert-part-2-

visualizing-the-inner-workings-of-attention-60a16d86b5c1. Both visited 27/6 2021.

Page 11 of 89

jalammar.github.io/illustrated-transformer/
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1


Theory and State of the Art Technical University of Denmark

meaning between conjugations, but the näıve solution would require learning an em-

bedding for each form. While this might be solved by lemmatizing words to their stems,

this introduces the problem of information loss.

A more effective way of tokenizing has been presented by Sennrich et al. [SHB16]

that uses the byte-pair encoding (BPE) compression algorithm. This method produces

a token vocabulary of a given size from the corpus where each token is either a full word

or a subword. BERT uses the WordPiece BPE token vocabulary which contains 30,000

tokens that have been learned with heuristic tokenization rules [Wu+16; Dev+19].

Radford et al. [Rad+19] modify BPE tokenization for the GPT-2 transformer such

that splits are made on the byte level rather than on the character level, which works

better on corpora containing many non-ASCII characters. This method is used by

RoBERTa to produce a token vocabulary of size 50,000 [Liu+19]. LUKE directly uses

RoBERTa’s tokenizer when dealing with words [Yam+20].

2.3 Deep Natural Language Processing in Danish

Danish is, compared to English, a low resource language: The world’s Danish-speaking

population is smaller than the English-speaking population of some large cities, nat-

urally resulting in significantly fewer and smaller available text datasets, and in less

attention from both researchers and practitioners. While pushing the performance of

current NLP algorithms to their limits is much more difficult in low resource languages,

the field of applied NLP in Danish has adopted many of the deep learning developments

of recent years.

Word embeddings are used as a core component of many NLP pipelines. In the large,

open source NLP frameworks SpaCy [Hon+20] and Flair [Akb+19], which also release

pretrained Danish models, the embeddings interact with different, ever-improving lan-

guage models. This has successfully resulted in SOTA on multiple Danish NLP tasks.

The Alexandra Institute, a Denmark based AI research and development organization,

release versions of both Flair and SpaCy fine-tuned on multiple benchmarks, including

NER, and report close to SOTA performance using these. The benchmarks, results, and

fine-tuned Danish models are released as a part of their open source DaNLP project

gathering resources for Danish NLP [Bro+21]. Another application of existing NLP

frameworks was performed by Kenneth Enevoldsen, Center of Humanities Computing,

Aarhus University in releasing the model DaCy, based on version 3 of SpaCy [Ene21].

In Danish, the most significant, pretrained language model is in our estimation a

Page 12 of 89



Theory and State of the Art Technical University of Denmark

Danish version of BERT, released by the company BotXO in 2019 [Bot19]. This model,

in the following called da-BERT, is produced by pretraining the base architecture of

BERT [Dev+19] on 10 GB of Danish text predominantly acquired from web scrapes.

The da-BERT model has been fine-tuned on most Danish benchmarks in the DaNLP

project and consistently yields top results [Bro+21; Hvi+20]. The model and its tok-

enizer are trained on lowercased text.

Another, more recent, Danish transformer is the adaption of the more resource-

efficient language model Electra to Danish under the name Ælæctra by Malte Hømark-

Bertelsen, KMD and Aarhus University [Høj20]. NER fine-tuned versions of Ælæctra

and some multilingual transformers have been released by Ekstra Bladet Analyse under

the project NER for Danish (NERDA) [KN20].

Of this plethora of Danish language models and NLP frameworks, the current (June

2021) SOTA on central NER benchmarks is, according to DaNLP, the 2021 newcomer

DaCy. This model surpassed DaNLP’s fine-tuned da-BERT model which was SOTA

when we started this project2.3. These results are reproduced and compared with

DaLUKE in this project. The NER benchmark will be presented in Section 3.2.1,

the reproduction method in Section 4.1.3, and the results in Section 5.3.

Finally, the NLP scene of a language is much more than the public, pretrained

models: The available rule-based tools, corpora, and other language resources are in-

strumental in developing practical NLP pipelines. One pipeline supplying multiple

of these resources is the IT University of Copenhagen project DKIE, also including

a NER model [DFB14]. A 2019 paper by NLP researchers at the same university

surveyed the availability of such tools and highlight a lack of practical resources and

datasets [Kir+19]. Other overviews of Danish NLP resources include those published

by the Alexandra Institute at DaNLP [Bro+21] and the comprehensive list maintained

by Finn Årup Nielsen, DTU Compute [Nie21].

2.4 Deep, Knowledge-enhanced NLP

The combination of statistical methods and explicit human-crafted domain knowledge

was SOTA in many NLP tasks in the 1990s and up into the 2000s [RN09, Sec. 22.5].

As with most other fields of AI, the emergence of performant deep learning methods

disrupted NLP in the 2010s, popularizing the methodology of using deep LMs [OMK18].

2.3A table of the results can be seen at the DaNLP repository at https://github.com/

alexandrainst/danlp under docs/docs/tasks/ner.md.

Page 13 of 89

https://github.com/alexandrainst/danlp
https://github.com/alexandrainst/danlp


Theory and State of the Art Technical University of Denmark

This approach rarely includes any modeling of knowledge that is not induced implicitly

by the contextual representations generated during pretraining on an unannotated text

corpus.

The Defense Advanced Research Projects Agency (DARPA) identify the future wave

of AI as one of contextual adaption; a combination of deep learning for perception and

latent representations and symbolic modeling methods [Lau17]. In NLP, knowledge-

enhancing deep neural networks is not just an idea for the future: Several approaches us-

ing explicit knowledge to improve pretrained contextual word representations (CWRs)

have been presented in recent years, a subset of which will be summarized here.

2.4.1 Static, Separate Knowledge Graphs

A direct way to use explicit knowledge is to maintain a separate representation of facts

which can be incorporated into both pretraining and inference of deep language models.

This representation is often called a knowledge base (KB) – or knowledge graph (KG)

if relational facts are modeled.

In 2019, Enhanced Language Representation with Informative Entities, ERNIE, was

introduced by a Beijing team [Zha+19] looking to ”enhance language representation

with external knowledge” [Zha+19, p. 1] by recognizing mentions of NEs in given text

and retrieving their positions in a separate knowledge graph. The query from the

knowledge graph is encoded into knowledge embeddings which are taken as input for

a BERT-based dual transformer architecture. The model was during training required

to fill in randomly masked NEs entities in given sequences using the KG. ERNIE was

not evaluated on NER the original paper, but was evaluated on the General Language

Understanding Evaluation (GLUE) benchmark [Wan+18], where it did not outperform

BERT.

Later in 2019, a similar idea was proposed in Knowledge Enhanced Contextual Word

Representations where the model KnowBert [Pet+19] was shown to outperform ERNIE

and BERT in knowledge related tasks, though GLUE and NER were not tested. Here,

the key addition was the Knowledge Attention and Recontextualization (KAR) com-

ponent which allows information to be retrieved from multiple KG’s of different forms

such as WordNET and Wikipedia and represented within the BERT encoder.

In KnowBert, though the KAR weights were trained, the KG was only used for

encoding fixed facts for the model. The Knowledge Graph Language Model (KGLM)

presented in Barack’s Wife Hillary: Using Knowledge Graphs for Fact-Aware Language

Page 14 of 89



Theory and State of the Art Technical University of Denmark

Modeling [Log+19] employs a more dynamic use of the knowledge graph. This model

uses the same approach to represent knowledge graph facts as ERNIE, but also builds

a local graph on the sequence level which is grown by a generative model with each

new token. The paper presents improved fact completion compared to GPT-2 and

further analysis has shown that the overall fact completion of KGLM is comparative to

KnowBert, though they perform very differently from domain to domain, with KGLM

being most dependent on the used knowledge graph [Bir20].

2.4.2 Pretraining Augmentations

A strength of the statistical, deep approach that implicitly models knowledge is the

potential for generalizable results: You do not need a new domain specific KG for every

application if enough general knowledge has been caught in your weights. Motivated

by the hope of this elusive generalizability, a number of methods have been proposed

to enhance specifically the pretraining of language models to better handle factual

knowledge, without using explicit KGs in the inference. LUKE, the subject of this

project, is one of these attempts.

An example of this weaker knowledge modeling is found in the 2019 model KEPLER:

A Unified Model for Knowledge Embedding and Pre-trained Language Representation

[Wan+21] where downstream inference can be performed without any additional re-

sources other than the transformer structure itself. The knowledge enhancement of

this BERT-based LM is, however, in the pretraining where the model optimizes over a

joint task of both performing MLM and a novel knowledge graph objective requiring the

model to learn knowledge embeddings. KEPLER does not improve GLUE performance

compared to RoBERTa [Liu+19] from which it was initialized, but beats both classical

language models and knowledge enhanced ones such as ERNIE and KnowBERT on a

number of knowledge related tasks.

This idea of pretraining a transformer both for MLM and for a new knowledge-

guided task has been taken up multiple times, including in LUKE. WKLM, presented

in 2019 in Pretrained Encyclopedia: Weakly Supervised Knowledge-Pretrained Language

Model [Xio+19], uses the English Wikipedia, taking hyperlinks to be entities. The au-

thors train an unaltered BERT architecture jointly on MLM and on a task involving

identifying the randomly replaced entity in a sequence. KALM, published after LUKE

in Knowledge-Aware Language Model Pretraining [Ros+20], also keeps the core lan-

guage model architecture, in this case GPT-2, unchanged, adding a separate entity

Page 15 of 89



Theory and State of the Art Technical University of Denmark

tokenizer and entity embedding layer for an entity prediction pretraining task.

These models achieve good performance; WKLM surpasses BERT and ERNIE on

some question answering and entity related benchmarks, and KALM outperforms GPT-

2 on some knowledge related zero-shot tasks. However, the 2020 article K-Adapter:

Infusing Knowledge into Pre-Trained Models with Adapters [Wan+20] raises a concern

with the approach. According to the authors, the idea of knowledge-augmenting the

pretraining task and then updating the entire model limits the ability to inject versatile

knowledge and sets up a heterogeneous learning problem resulting in entangled param-

eters that are hard to investigate. The model K-Adapter instead uses ”adapters”,

add-ons for the transformer structure, which are pretrained for different knowledge

tasks while the base RoBERTa parameters are not updated. The resulting model out-

performs BERT, WKLM, ERNIE, KEPLER, and KnowBERT on central knowledge

related tasks.

Another issue, raised more recently, with this jungle of knowledge-enhanced models

is that they do not unify generative and discriminative tasks, limiting their generaliz-

ability to fewer downstream tasks. This is voiced in KgPLM: Knowledge-guided Lan-

guage Model Pretraining via Generative and Discriminative Learning [He+20] where

the model KgPLM, pretrained by both generating masked entities and discriminating

replaced ones, is proposed as a solution.

Which of the knowledge-enhanced models results in the best general performance

for practitioners is beyond the scope of this project, as the continuous improvement

of many of the models and large amount of different benchmarks used in the articles

make direct comparisons of general language understanding ability challenging. On

all benchmarks tested by the LUKE team [Yam+20], none of the above models have

presented higher scores than LUKE [Yam+20, Sec. 4].

2.5 LUKE

LUKE, Language Understanding with Knowledge-based Embeddings, is a language

model introduced by Yamada et al. in October 2020 [Yam+20]. As the model is

applied in this project, key properties of the architecture and pretraining methodology

are presented in this section.

Like other new models, LUKE builds on the BERT transformer architecture [Dev+19],

adding a knowledge-enhancing pretraining task. But the LUKE encoder does not only

produce CWRs; entities are also represented by the encoder by mapping each entity to

Page 16 of 89



Theory and State of the Art Technical University of Denmark

the same latent space as the words. In the pretraining of LUKE, entities correspond to

Wikipedia articles.

Yamada et al. show that this approach leads to SOTA results on a number of

entity-related tasks, such as NER, and argue that the LUKE approach mitigates the

following issues with existing methods:

• Existing CWRs cannot represent spans of multiple words and thus require addi-

tional downstream modeling for language tasks in which word spans are impor-

tant.

• Transformers can capture the many intricate relations between single words, but

language often requires reasoning about the relationships of entities consisting

of multiple words [Yam+20]. This is difficult for language models that were

trained to predict ”Rings” in ”We watched Peter Jackson’s movie, The Lord of

the [MASK]”, which requires less knowledge than predicting the entire ”The Lord

of the Rings” entity.

The LUKE idea is to consider entities as first-class citizens of text documents along

with words, maintaining vocabularies of both entity and word tokens.

2.5.1 Architecture

Input Tokenization An input example for LUKE consists both of a sequence of

words and a set of entities mentioned in the document, such as:

• ”Biden is oldest president of the United States to date.”

• {Joe Biden at word #1,The United States of America at words #7-8}.

For use of LUKE, the text sequence is tokenized into m subword tokens using the

normal tokenizer of RoBERTa, the transformer on which LUKE is based. The entities

are converted to n entity tokens; integer values corresponding to indices in a vocabulary

of known, named entities. The positions of the entities are included in the further

inference as position IDs.

Embeddings The subword tokens are passed through the same, static word embed-

ding architecture as that of BERT which outputs m vectors of dimension H, one for

each subword. Entity embeddings are somewhat more complex than a simple lookup

table. Entities given to the model also include their positions in the sequence. The po-

sitions and the entities themselves have respective, static embeddings, with the position

Page 17 of 89



Theory and State of the Art Technical University of Denmark

embeddings residing in RH and the entity embeddings in Rh where h < H. Because

of the large entity vocabulary, having the entity embeddings be H dimensional would

be highly memory intensive, hence why they are stored in a smaller latent space. A

single, linear layer maps the entity embeddings from Rh to RH . The mapped entity

embeddings are then added to the positional embeddings, making up the final entity

embeddings. For the rest of the report, references to entity embeddings refer to this

combined embedding, unless explicitly stated otherwise.

The produced word and entity embeddings are concatenated to a matrix ∈ R(n+m)×H .

Transformer The embeddings of words and entities are forward passed through a

transformer operating on entire sequences of embeddings both those representing words

and entities. This component is dubbed the encoder and, after N attention blocks

with the same input and output dimensionality, outputs the final contextualized H-

dimensional representations: The first m correspond to words and the last n to entities.

The main LUKE model, LUKE large, has, following BERT, N = 24 and H = 1024.

After the computation of the representations, the model can be extended with a

decoder consisting of bi-directional classification heads for pretraining, or it can be

extended with a linear layer for downstream tasks.

Text sequence with

annotated entities

Word tokenizer

Entity tokenizer

Word embeddings

Entity embeddings

m subword IDs

n entity and

position IDs

Transformer:
24× attention

w1,...,m

e1,...,n



x1

...
xm

xm+1

...
xm+n



Figure 2.2: Overview of the LUKE pipeline from annotated text to contextualized
representations of both words and entities. wi, ei,xi all reside ∈ RH with H = 1024 in
the LUKE implementation.

Page 18 of 89



Theory and State of the Art Technical University of Denmark

Transfer Learning The word/entity duality of LUKE means that a large part of the

model performs the same task as the conventional word-based LMs. For this reason, the

word embeddings in LUKE follow the BERT architecture, and Yamada et al. initialize

these embeddings to those found in RoBERTa. In the pretraining of Yamada et al.,

the encoder of LUKE is also equivalent to that of BERT and is initialized using the

weights of RoBERTa. These transfer learned weights are kept fixed for the first half of

the training.

Entity-aware Self-attention Additionally, Yamada et al. present an entity-related

change to the BERT encoder architecture in the query mechanism of the attention

scorer [Yam+20, Sec. 3.2].

For the attention between token i and token j with the respective representations

xi and xj, a core part of the normal transformer attention mechanism is to compute

the following scalar:

qij = x⊤
j Qxi, (2.1)

where Q ∈ RH×H is a learnable component called the query matrix [Vas+17, Sec.

3.2.1].

In LUKE, the tokens xi may either be words or entities. To handle this explicitly,

the idea of entity-aware self-attention changes the computation of the query attention

scalar qij to

qij =


x⊤
j Qw2wxi if both xi and xj are word tokens

x⊤
j Qw2exi if xi is word and xj is entity

x⊤
j Qe2wxi if xi is entity and xj is word

x⊤
j Qe2exi if both xi and xj are entity tokens

. (2.2)

LUKE, however, is not pretrained using this mechanism, but for the fine-tuning tasks,

Yamada et al. show in ablation experiments that using this addition consistently yields

better performance [Yam+20, Sec. 5.2]. This new mechanism, theorized to improve

entity knowledge by Yamada et al., was not used in pretraining with the following ex-

planation: ”We perform pretraining using the original self-attention mechanism rather

than our entity-aware self-attention mechanism because we want an ablation study of

our mechanism but can not afford to run pretraining twice” [Yam+20, Sec. 3.4].

Page 19 of 89



Theory and State of the Art Technical University of Denmark

2.5.2 Pretraining

Yamada et. al perform the pretraining of LUKE by extending the MLM task of

RoBERTa [Liu+19]. Where RoBERTa is trained to predict randomly masked words,

LUKE is trained to predict both randomly masked words and entities, such as

• ”Franklin Roosevelt did not [MASK] to see the [MASK] of WWII.”

Truth: ”live”, ”end”.

• {[MASK] at words #1-2,World War II at word #11}
Truth: ”Franklin D. Roosevelt”.

Following RoBERTa [Liu+19], subword tokens making up 15 % of full words in each

sequence are, each batch, randomly replaced with the [MASK] token. Of these, 10% are

unmasked again, and another 10% are replaced by a random token from the vocabulary

instead of [MASK]. Similarly, 15 % of entity tokens are replaced with [MASK], but

none of these are unmasked or replaced with random entities. The model is then

trained to predict tokens at mask positions. The model parameters are updated by

the stochastic gradient optimization algorithm known as Adam with weight decay fix

(AdamW) [LH19].

For a batch of size N and C classes, the model produces a matrix of size N × C

where Xi,j is the class score for class j for the i’th example in the batch. For each of

the two classification tasks, the cross entropy loss l is calculated as

l =
1

N

N∑
i=1

(
−Xi,ci + log

C∑
j=1

expXi,j

)
, (2.3)

where ci is the true class of the i’th example [Conb]. The total loss is calculated as the

sum of individual losses for both tasks.

Yamada et al. [Yam+20] use weight decay for the entire model, except for bias and

layer normalizations. According to Krogh and Hertz [KH91], the regularization induced

by weight decay improves generalizability in feed-forward networks.

Entity Mask Prediction Head For the entity pretraining task, LUKE is equipped

with another classifier structure in addition to the MLM prediction head inherited from

BERT. This new prediction head follows the architecture of the masked word scorer

just operating on the entity representations. The masked entity tokens are thus scored

as corresponding to one of the entities in the entity vocabulary by two linear layers.

Page 20 of 89



Theory and State of the Art Technical University of Denmark

The GeLU activation [HG20] and layer normalization components are placed between

the layers.

2.5.3 Fine-tuning for Named Entity Recognition

Yamada et al. base their NER fine-tuning on the method from Sohrab and Miwa

[SM18]. All possible spans over the entire sequence (or n-grams) are calculated and

saved as entity candidates. Spans longer than 16 words and spans that cross sentence

boundaries are discarded. Each span along with the text in which it appears is saved

as a NER example.

An example is forward passed through LUKE by marking the candidate entity with

the [MASK] entity ID. For each named entity candidate, the computed representation

of this [MASK] entity and the CWRs of the first and last word tokens in the span are

concatenated. [MASK] is used as NE candidate as this entity ID was used for a similar

prediction task in the pretraining. For NER, only [MASK] and [PAD] are used out of

all the entity embeddings that LUKE contains.

The combined representation from the pretrained model is then given to a single

linear layer that learns to classify the candidate as either a non-entity or one of the

classes in the dataset. For a dataset with n classes, the learning problem is an n + 1

class classification task. The loss is calculated as the cross entropy loss between the

predicted class scores and the true class scores using equation (2.3). Both the full

pretrained model and the linear classifier are fitted. An issue with the n-grams is the

large amount of overlaps between spans. This is solved by greedily selecting spans based

on the class scores from the classifier. Thus, if two (partially) overlapping spans both

are predicted to cover an entity, only the one with the highest score is kept, while the

other is predicted to be a non-entity.

Page 21 of 89



3. Data

3.1 Entity-annotated Danish Wikipedia

For the pretraining of LUKE, a corpus of entity-annotated text is needed. Entity

annotations consist of two things: The word span and the name of the entity. No text

is written directly with such annotations in mind. However, some texts such as news

articles often contain embedded hyperlinks that implicitly provide the word spans, but

these often point to other articles rather than specific items. On Wikipedia, this is

not the case, as hyperlinks point to articles on specific topics, which makes it suitable

for LUKE’s pretraining task. Given its size, Wikipedia is thus a particularly useful

pretraining dataset.

As of June 23rd, the Danish Wikipedia has 267,408 content pages containing a

total of 81,822,460 words3.1. The Danish Wikipedia from March 1st, 2021, which is

marginally smaller, was used for building the DaLUKE dataset. Yamada et al. limit

the entity vocabulary to the 500,000 most often linked pages [Yam+20]. As the Danish

Wikipedia is only roughly 2.5% the size of the English Wikipedia, no limit on the entity

vocabulary was imposed, to preserve data.

Every article is a sequence of words with embedded hyperlinks. These were split

into sequences of at most 512 tokens using BotXO’s Danish BERT tokenizer, and the

token spans of the hyperlinks were saved. Following BERT [Dev+19], the first and last

tokens were always [CLS] and [SEP], respectively, with the remaining 510 tokens coming

directly from the tokenizer. Sequences were cut short if necessary to prevent hyperlinks

spanning two sequences. All sequences contain text from at most one paragraph in an

article.

Word spans over tokens were also saved, as the MLM pretraining task was done on

a full word level. Subword and entity tokens were masked using the [MASK] token.

The [UNK] special token is reserved for subwords that are not part of the tokenizer’s

vocabulary.

Thus, an entry in the dataset – called an example – consists of the following:

3.1https://da.wikipedia.org/wiki/Speciel:Statistik. Visited June 23, 2021.

Page 22 of 89

https://da.wikipedia.org/wiki/Speciel:Statistik


Data Technical University of Denmark

• An array of at most 512 subwords token ID’s

• An array of at most 128 entity ID’s

• An array of two-tuples containing the start and end indices for every entity

• An array of two-tuples containing the start and end indices for every full word

Finally, the pretraining dataset was the set of all examples from all articles.

3.1.1 Entity Augmentations

One limitation of Wikipedia as a pretraining dataset is that hyperlinks are rarely re-

peated, even if the same article is referenced multiple times on a page. This results in

false negatives – cases where entities are not annotated as such.

In order to augment the entity annotations, we performed preprocessing onWikipedia

before pretraining. Our preprocessing consisted of the following two steps applied

article-wise:

1. Collect the set of mentioned articles including the title of the article itself. Only

include titles of at least three characters.

2. For each title, check if it matches a sequence of characters following a whitespace

while ignoring casing. If there is a match, annotate and go to next whitespace.

Many hyperlinks span only the first part of a given word. For instance, this allows

the word ”Windmills” to link to the article ”Windmill”. When matching, such cases

were annotated as we expected it to remove numerous false negatives, while introduc-

ing relatively few false positives. Not annotating titles shorter than three characters

prevented the article on ”A” to be linked at every word starting with ”A”. We also

only matched titles already linked in the articles, as we assumed that any article that

should be linked to, had already been linked at least once. This should further reduce

the number of false positives. Whether this had a positive effect on learning, is subject

to an experiment presented in Section 6.1.5.

Table 3.1 shows how these augmentation steps change the properties of the dataset.

Page 23 of 89



Data Technical University of Denmark

Statistic Unaugmented Augmented Difference
Subword tokens 101,394,208 108,322,681 +6,8 %
Entity vocabulary size 214,150 225,198 +5,2 %
Entity annotations 4,883,918 7,180,372 +47,0 %
Examples 363,498 378,357 +4,1 %

Table 3.1: Statistics for both datasets. The increase in entity vocabulary size is
explained by adding links that point to the article in which the link occurs. This means
that some articles, which are never linked to, have links in the augmented dataset,
causing to be included in the entity vocabulary. The increased number of subword
tokens and examples comes from not including sentences without entities, of which
there are fewer in the augmented dataset.

3.2 Named Entity Recognition Benchmarks

3.2.1 Danish Named Entity Recognition Datasets

For the task of benchmarking both existing and new Danish NER models, three publicly

available datasets previously used in the literature were identified.

Danish Universal Dependencies Universal Dependencies of Danish Dependency

Treebank (UD-DDT) is a grammatically annotated dataset produced by converting the

Danish Dependency Treebank corpus [Kro03] to the Universal Dependency annotation

format [JMP15]. The dataset consists of 5512 sentences and 100,733 characters from the

Danish PAROLE corpus containing book, newspaper and journal literature from 1983-

1992 [NKA98]. UD-DDT is split into training, development and test sets consisting of

4383, 564 and 565 sentences, respectively. Two NER annotations of this dataset are

considered.

• DaNE is a 2020 NER annotation of the entire UD-DDT into four categories

PER(son), ORG(anisation), LOC(ation), MISC(ellaneous) performed once by a

linguist and once by a team of non-linguists for the Alexandra Institute [Hvi+20,

Sec. 4]. The categories are described in closer detail in Section 3.2.3.

• A NER annotation of the development and test subsets of UD-DDT into the same

four entity categories was performed by Barbara Plank in 2019 [Pla19]. A subset

of the training data was also annotated. This annotation will be called Plank.

Page 24 of 89



Data Technical University of Denmark

Wikipedia Annotations Pan et al. performed an automatic NER annotation of a

Wikipedia corpus in 2017 by transferring English NER of the categories PER, ORG, and

LOC to 281 languages including Danish [Pan+17]. This dataset is known as WikiANN

(Wikipedia Annotations) and the Danish version includes 40,000 sentences. Pan et al.

consider this a ”silver-standard annotation” due to its automatic generation which they

label knowledge base mining [Pan+17, p. 1946]. The balanced training, development,

and test splits from Rahimi et al. are used [RLC19].

Comparison These three NER-annotated datasets were used and a summary of their

counts is shown in Table 3.2. DaNE is considered the main public Danish NER dataset,

as it is produced with the highest degree of expert supervision and used for training most

of the models compared in Section 4.1.3. However, as shown on Table 3.3 and Figure

3.1, DaNE and Plank suffer from uneven label distributions in the different subsets. As

most model training assumes that the training data has the same distribution as the true

distribution, this could cause evaluations on the test sets to give a poor approximation

of real-world performance. Previous literature has highlighted the scarcity of accessible,

gold-standard, Danish NER data as a limitation in the field [Pla19, Sec. 2.1].

Dataset
Number of sentences Test set entities

Train Dev. Test LOC PER ORG MISC
DaNE 4,383 564 565 96 180 161 121
Plank 604 564 565 97 169 94 30
WikiANN (da.) 20 · 103 10 · 103 10 · 103 5,242 4,378 4,078 0

Table 3.2: Counts of sentences and test set entities in the three Danish NER bench-
marks. Note the clear differences in annotations between DaNE and Plank, which use
the same text corpus.

Subset of data LOC PER ORG MISC
Training 945 1,249 802 1,007
Dev. 111 166 90 113
Test 96 180 161 121

Table 3.3: The number of NEs by category and data split in DaNE.

Page 25 of 89



Data Technical University of Denmark

Figure 3.1: Distribution of entity labels in the three Danish NER datasets. Notably,
DaNE and Plank do not have the same distributions in the three datasets, with e.g.
LOC being under-represented in the DaNE test set and MISC being over-represented
in the Plank test set. WikiANN is the only dataset that has the same distribution in
all three subsets.

3.2.2 CoNLL-2003

The shared task for the 2003 Conference on Computational Natural Language Learning

(CoNLL) was NER for which annotations on English Reuters news wire articles were

performed by researchers [TD03]. This corpus consists of 1393 articles that were divided

into training, development and test sets as seen in Table 3.4. The dataset is the central

benchmark in English NER [Yam+20, Sec. 4.3] and has a competitive history with over

50 models submitted to the performance leaderboard at Papers With Code 3.2.

CoNLL-2003 English Articles Sentences Tokens LOC PER ORG MISC
Training set 946 14,987 203,621 7,140 6,600 6,321 3,438
Development set 216 3,466 51,362 1,837 1,842 1,341 922
Test set 231 3,684 46,435 1,668 1,617 1,661 702

Table 3.4: Dataset counts for the canonical NER dataset CoNLL-2003. We note
multiple differences in NE distributions compared to the Danish NER datasets shown
at Table 3.2 and take this as an indication of the different corpus backgrounds.

3.2See https://paperswithcode.com/sota/named-entity-recognition-ner-on-conll-2003.
As of June 2021, LUKE is second in the leaderboard.

Page 26 of 89

 https://paperswithcode.com/sota/named-entity-recognition-ner-on-conll-2003 


Data Technical University of Denmark

3.2.3 Annotation Schemes: What Do The Tags Mean?

The DaNE and Plank sets refer to the CoNLL-2003 as their reference annotation scheme

[Hvi+20, Sec. 4] [Pla19, Sec. 2.1]. WikiANN follows the same categories, excluding

MISC. All datasets follow the Inside-outside-beginning (IOB) format that ascribes a

word the ”I-X” tag if it is inside a named entity of type X, ”B-X” if it begins the entity,

and ”O” if it is outside named entities (e.g. the null class). This format proposed by

Ramshaw and Marcus in 1995 is widely used but does allow entities to be nested or to

overlap [RM95].

Text example Antonio Vivaldi came from Venice
IOB annotation B-PER I-PER O O B-LOC

The definition of the annotation categories are given in the CoNLL-2003 guidelines3.3 and

are summarized here:

• LOC: Geographical regions, natural locations, and public and commercial places.

Also includes abstract places.

• PER: Names, aliases of people, animals, and fictional characters.

• ORG: Companies, brands, government bodies, movements, clubs, and subdivi-

sions thereof.

• MISC: Titles of media, nationalities, languages, religions, ideologies, wars, slo-

gans, eras, and adjectives and word combinations that are derived from one of

the other tags.

To end the introduction of the data, some examples of NEs in each testing dataset are

shown. Note that the all-important context of the words is not shown here.

• DaNE: helvede (LOC), Holland (LOC), Astrid Lindgren (PER), Odense Teater

(ORG), det danske rigsfællesskab (ORG), afghansk (MISC), Camel (MISC)

• Plank: Bagdad (LOC), Bjarne (PER), USA (ORG), Københavns Kommune

(ORG), DR-dokumentar (MISC), Levi’s jeans (MISC)

• WikiANN (da.): Dinariske Alper (LOC), Esbjerg Kommune (LOC), Jorge Luis

Borges (PER), FC Barcelona (ORG), kommunehospitals (ORG)

• CoNLL-2003: Buenos Aires (LOC), Whistler Mountain (LOC), Katja Seizinger

(PER), FIFA (ORG), Asian Cup (MISC), Swede (MISC)

3.3These are available at clips.uantwerpen.be/conll2003/ner/annotation.txt. Visited Febru-
ary 27, 2021.

Page 27 of 89

clips.uantwerpen.be/conll2003/ner/annotation.txt


4. Methods

4.1 Benchmarking Named Entity Recognition

4.1.1 Evaluation of Named Entity Recognition

As explained in Section 3.2.3, all datasets used in this project supply an annotation

label in IOB format [RM95] for each word in each sequence. Comparing a sequence

of true annotations and predictions, there are a number of potential error patterns as

both the span and the type of the entity are to be guessed, see Table 4.1.

Sentence Gaul is divided into three parts.
True annotation B-LOC O O O O O
I (TP): Complete match B-LOC O O O O O
II (FP): Spurious entity B-LOC O O O O B-MISC
III (FN): Missing entity O O O O O O
IV: Wrong type B-ORG O O O O O
V: Wrong boundary B-LOC I-LOC O O O O
VI: Wrong type and boundary B-ORG I-ORG O O O O

Table 4.1: The different outcomes of a prediction when related to the ground truth.
This categorization and naming is taken from [Bat18]. The first three simple cases can
be translated to true positives, false positives, and false negatives, when considering
only one entity type at a time.

In our evaluation, the simple and strict approach of the CoNLL-2003 shared task eval-

uation was followed, explained as:

”Precision is the percentage of named entities found by the learning system that

are correct. Recall is the percentage of named entities present in the corpus that are

found by the system. A named entity is correct only if it is an exact match of the

corresponding entity in the data file.” [TD03, Sec 2.4]

Using the terminology of Table 4.1, these measures are below defined for a class

(such as LOC) when assuming the predictions and ground truth both contain at least

Page 28 of 89



Methods Technical University of Denmark

one positive label.

Precision =
# case I

# case I + # case II
, Recall =

# case I

# case I + # case III
. (4.1)

From these class-level metrics, global values of precision and recall were reported using

the micro average, that is, by aggregating the number of prediction outcomes (I, II,

III) across classes before using eq. (4.1). In the report, every reference to an average of

metrics over NER classes refers to this micro average. Thus, using this approach, the

error types IV, V and VI are not treated explicitly.4.1.

Following previous literature, the main score on which the system performance was

judged is the F1 score, the harmonic mean of precision of recall;

F1 =
2

Precision−1 +Recall−1 (4.2)

The reported scores were obtained using a Python sequence evaluation library [Nak18],

also used by the original LUKE paper and DaNLP, with whom comparisons are made.

Two of the three used datasets contains MISC annotations, and existing literature

disagrees on whether to consider this class in evaluations, with DaNLP arguing ”We are

only reporting the scores on the LOC, ORG, and PER entities as the MISC category

has limited practical use” [Bro+21, Sec. ”Benchmarks” in NER page]. We, however,

trained all models with the MISC annotation and also included it in our evaluations,

as we focus less on the practical application of the measure and more on its connection

to language understanding. When comparing with models trained without MISC, a

non-MISC average F1 score is also reported (by treating all MISC predictions as null

class predictions).

When comparisons are made between model average F1 scores, an approximate 95%

confidence interval is reported (every time ± was used). This is calculated using the

normality approximation for binomial observations [Bro+18, Method 7.3], which gives,

4.1Using this approach, the cases IV and VI in Table 4.1 would for the evaluation of the LOC class
be treated as case III and for the evaluation of the ORG class be treated as case II. V would, similarly,
be counted as both a case II and III for ORG. Such errors would thus be judged harshly in the global
metrics and not show up in any way as partial corrects for any of the classes.

Page 29 of 89



Methods Technical University of Denmark

when denoting the true avg. F1 score f and the n sample estimate thereof f̂ , that

I = f̂ ± z0.975

√√√√ f̂
(
1− f̂

)
n

⇒ P (f ∈ I) ≈ 95 %, (4.3)

where z0.975 is the 97.5 % standard normal distribution percentile. For the sample size

n, the number of true entities4.2 in the dataset is used – this is 558 for DaNE, 390 for

Plank and 13698 for WikiANN.

4.1.2 Fine-tuning English LUKE

Yamada et al. benchmark LUKE on named entity recognition using the CoNLL-2003

dataset [Yam+20]. Reproduction of these results was attempted by obtaining the pre-

trained LUKE models from Yamada et al.’s software repository. The same hyperpa-

rameters as Yamada et al. were used and are shown along with the technical details in

Table 4.2.

The fine-tuning procedure was repeated five times for each of the two released LUKE

models, called large and base, to examine variability in the downstream training.

Pretrained model LUKE large4.3 LUKE base4.3

Pretrained model parameters 483 · 106 253 · 106
Pretrained model entity vocabulary 500 · 103 500 · 103
Learning rate 10−5 5 · 10−5

Effective batch size 16 16
Numeric precision Mixed FP16/FP32 (Nvidia APEX)
Training code PyTorch-based luke-repository4.4

Software version Python 3.6, PyTorch 1.2

Table 4.2: Hyperparameters used to fine-tune LUKE large and LUKE base on the
CoNLL-2003 dataset.

4.2Here, the number of true, entire entity spans in each class is used, not the number of words
annotated with the class; a unit used for other analysis in the discussion. The latter would overstate
the number of independent observations as two words in the same entity share much information.

4.3 The pretrained models were downloaded on 17/02-2021 from the LUKE software repository:
https://github.com/studio-ousia/luke/tree/6feefe657d97d2f847ace87f61f23b705f75d2aa#

released-models
4.4The repository github.com/studio-ousia/luke was cloned at commit-SHA 6feefe6, installed,

and used for the fine-tuning.

Page 30 of 89

https://github.com/studio-ousia/luke/tree/6feefe657d97d2f847ace87f61f23b705f75d2aa#released-models
https://github.com/studio-ousia/luke/tree/6feefe657d97d2f847ace87f61f23b705f75d2aa#released-models
github.com/studio-ousia/luke


Methods Technical University of Denmark

4.1.3 Off-the-shelf, Danish models

Nine publicly available Danish NER models usable by NLP practitioners were collected

and evaluated on the testing datasets of the three Danish NER annotations, considered

in Section 3.2.1: DaNE, Plank and WikiANN.

Most of the models were found through DaNLP [Bro+21], and a number of them

were introduced in Section 2.3.

• DaNLP da-BERT: The da-BERT model [Bot19] fine-tuned for NER on DaNE

by DaNLP.

• NERDA m-BERT: The multilingual BERT base released by the Google Re-

search BERT team [Dev+19] fine-tuned by NERDA [KN20] on DaNE.

• NERDA Ælæctra: The transformer Ælæctra, released by Malte Højmark-

Bertelsen [Høj20], fine-tuned by NERDA on DaNE.

• DaCy: An adaption of version 3 of the SpaCy framework [Hon+20] to Danish

by Kenneth Enevoldsen including fine-tuning of on DaNE [Ene21]. Both the

medium and large versions are benchmarked, using the base and large multilingual

RoBERTa [Con+20] models, respectively. This 2021 model, large version, is the

currently reported state of the art [Ene21; Bro+21].

• DaNLP spaCy: SpaCy, version 2, adapted to Danish by DaNLP and fine-tuned

on DaNE.

• DaNLP Flair: The Flair framework [Akb+19] also adapted to Danish by DaNLP

and fine-tuned on DaNE.

• Polyglot: An NLP framework supporting a wide range of tasks in many lan-

guages including NER in 40 different languages. The NER model is fine-tuned

using automatic, language-agnostic annotations generated from Wikipedia and

Freebase link structures [Al-+15].

• daner (DKIE Stanford CRF): An application of the Stanford CoreNLP Con-

ditional Random Field (CRF) NER classifier [Man+14] released by Leon Der-

czynski as a part of the DKIE project [DFB14]. The model was trained on NER

Page 31 of 89



Methods Technical University of Denmark

annotations produced at ITU on the Danish Dependency Treebank (DDT) corpus

[Kro03]. The released Java-based NER tool is called daner4.5.

The weights of all these finished NER models were downloaded and evaluated following

Section 4.1.1. The code for performing inference for all the models on the three datasets

and measuring the F1 scores can be found in the module reproduction.danish ner

in the DaLUKE repository4.6. The reproduction was performed using Python version

3.7.10 and the dependency versions defined in the requirements of DaNLP and NERDA.

4.2 DaLUKE

4.2.1 Pretraining Methodology and Hyperparameters

Our pretraining approach followed the one used by Yamada et al., as described in

Section 2.5.2, with four key differences:

1. Entity-aware self-attention was used in the pretraining, as this is expected to

positively impact the modeling of knowledge. This speculation is tested in Sec-

tion 6.1.4.

2. The entity-augmented Danish Wikipedia described in section 3.1.1 was used.

3. The model followed the architecture of BERT base instead of BERT large, and

weights were initialized from BotXO’s da-BERT [Bot19] as no Danish RoBERTa

or BERT large is available. An ablation study on this transfer learning from da-

BERT is introduced in Section 6.1.6. Because of this, token embeddings and con-

textualized representations both reside in a 768-dimensional latent space rather

than the 1024 dimensions used by LUKE large. DaLUKE also has 12 attention

blocks rather than 24. [Yam+20, Sec. 3.4]

4. The entity vocabulary, consisting of all mentioned Wikipedia articles, was lim-

ited in the English LUKE for computational efficiency [Yam+20, Sec. 3.4]. We

do not perform such limiting as the number of mentioned Wikipedia articles is

much smaller in the Danish corpus. An experiment of limiting the vocabulary is

discussed in Section 6.1.7.

4.5The repository is at github.com/ITUnlp/daner
4.6The reproduction code is available here: github.com/peleiden/daluke/tree/master/

reproduction/danish_ner.

Page 32 of 89

github.com/ITUnlp/daner
github.com/peleiden/daluke/tree/master/reproduction/danish_ner
github.com/peleiden/daluke/tree/master/reproduction/danish_ner


Methods Technical University of Denmark

Due to the memory-intensive nature of the transformer architecture, we followed Ya-

mada et al. and used gradient accumulation over multiple subbatches within each

batch, meaning that each parameter update consists of multiple forward passes of the

model.

As with LUKE, the cross entropy loss is calculated using eq. (2.3) for each classifi-

cation task, with the only difference being that the final loss is the average rather than

the sum of the individual task losses. This effectively scales the loss and does not affect

the learning if the learning rate is adjusted accordingly.

The hyperparameters used for pretraining are shown in Table 4.3. These were chosen

based on informal experiments, as structured hyperparameter search was not possible

within the time frame of this project.

Parameter Value
Epochs 150
Batch size 4080
Peak learning rate 3 · 10−4

LR warmup steps prop. 6 %
Mask prob. for words 15 %
Mask prob. for entities 15 %
Dropout 0.1
Weight decay 0.01
AdamW β1 0.9
AdamW β2 0.999
AdamW ϵ 10−6

Table 4.3: Hyperparameters used for DaLUKE pretraining.

LUKE follows BERT and increases its learning rate linearly from 0 to the peak learning

rate followed by a linear decrease to 0 for the rest of the training - the slanted triangle

learning rate (STLR). [Dev+19; Yam+20; HR18]

For pretraining, DaLUKE also employs linear warmup for the first 6% of parameter

updates, after which it decreases polynomially with a power of
√
3 to a final learning rate

at 10% of peak learning rate. This results in a more aggressive decrease in learning rate

after the warmup period but a slightly higher learning rate in the final steps compared

to STLR. This was used as the amount of available compute was not known in advance,

and this approach would work well with both early stopping and continued training.

The learning rate development is shown on Figure 4.1.

Page 33 of 89



Methods Technical University of Denmark

Figure 4.1: Learning rate during the pretraining.

Following Yamada et al., we do not update the parameters of the weights transferred

from da-BERT for the first half of the training.

Accuracy measures To measure the performance of the pretraining model, the ac-

curacies of word and entity predictions were calculated throughout the training. Due

to the size of the classification problem, especially regarding entities, top k accuracies

were calculated - that is, whether the true token was among the k tokens given the

highest probability by the model.

4.2.2 Fine-tuning DaLUKE for Named Entity Recognition

The fine-tuning of DaLUKE largely followed that of LUKE, described in Section 2.5.

The main DaLUKE NER model was produced by fine-tuning on DaNE.

After each epoch, the model was evaluated on the development split of the dataset.

When a better score than the so far best checkpoint was found, this was overwritten.

The best checkpoint of the model was used for evaluation on the test set.

Learning rate Unlike in the pretraining, we did as Yamada et al. and used a STLR

[Yam+20]. Howard and Ruder have also shown that the STLR approach for fine-tuning

tasks improves results compared to a linear decaying learning rates without warmup

[HR18].

Page 34 of 89



Methods Technical University of Denmark

Loss Due to the nature of the n-grams, only very few spans correspond to entities,

making the O class dominate the dataset. For instance, in the training set of DaNE,

the O class accounts for 99.3 % of spans, and the entity counts are not balanced. This

motivated us to implement class frequency-weighted loss, the performance of which is

discussed in Section 6.2.2.

The class-weighted loss lw was calculated similarly to the unweighted loss in eq.

(2.3):

lw =
1∑C

j=1wj

N∑
i=1

wci

(
−Xi,ci + log

C∑
j=1

expXi,j

)
(4.4)

where wj is the weight of class j [Conb]. We used the reciprocal of the number of

occurrences of each class in the training dataset.

Unless otherwise stated, all fine-tunings presented in the rest of the report use the

non-weighted loss.

Hyperparameter search The development set of DaNE was used to guide a simple

search for fine-tuning hyperparameters for the final model. The search is performed

by repeating the training procedure with all combinations of the following parameter

values that were chosen based on previous, informal experimentation.

1. Batch size ∈ {8, 16}
2. Peak learning rate ∈ {10−5, 5 · 10−5}
3. Dropout (final, linear layer) ∈ {0.025, 0.1}
4. Whether to use class-weighted loss ∈ {Yes,No}

Parameter Value

Epochs 15
Batch size 8
Peak learning rate 5 · 10−5

LR warmup steps proportion 6 %
Dropout (pretrained model) 0.1
Dropout (final, linear layer) 0.025
Weight decay 0.01
Loss weighting No

Table 4.4: Hyperparameters used for fine-tuning DaLUKE for NER.

Page 35 of 89



Methods Technical University of Denmark

For each combination, the resulting model was evaluated on the development set, shown

in Table A.3, and the hyperparameters with the highest average F1 score were chosen.

The final model was produced by fine-tuning again to limit selection bias. The chosen

hyperparameters are reported in Table 4.4 together with the used hyperparameters that

were not tested.

4.2.3 Implementation Details and Open Source Software

Open Source Software Package We publish DaLUKE and all related code under

the MIT open source software license [MIT]. All code and documentation is available

at https://github.com/peleiden/daluke. The pretrained model is available with

MLM layers at https://nx5746.your-storageshare.de/s/qDM2TE6m9CKmPWd. The

model fine-tuned on DaNE is available at https://nx5746.your-storageshare.de/

s/wxbY3TrwfAoYxb9. Our software package is pip installable and runs on Python 3.8

and above. Simply run pip install daluke to install it locally. It allows the use of

DaLUKE both for MLM and NER on text files or inputted strings directly from the

command line. For instructions, see the readme file on the repository.

Implementation Yamada et al. have made their code4.7 freely available under the

Apache License 2.0 [Fou04]. We highly appreciate this, and our original plan was to

use their code. However, we quickly ran into problems with this approach, as getting

all dependencies installed with the correct versions on our computing cluster proved to

be a very challenging task. To solve this, we forked the repository and updated both

Python and several of the dependencies to newer versions, but this in itself required

significant code rewrites. When that worked, we started pretraining, which presented

more mysterious issues: Training on a single GPU worked, but two GPUs slowed train-

ing by a factor of three, and three or more GPUs simply did not work. Due to limited

GPU availability, cryptic error messages, and a lack of documentation, debugging once

again became difficult.

These reasons compelled us to reimplement the model and training from scratch,

which also allowed fitting the software to our specific needs. The forked LUKE repos-

itory, available at https://github.com/peleiden/luke, is used for parts of the pre-

training dataset preparation, but everything else has been reimplemented. Our code

4.7https://github.com/studio-ousia/luke. Visited June 11, 2021.

Page 36 of 89

https://github.com/peleiden/daluke
https://nx5746.your-storageshare.de/s/qDM2TE6m9CKmPWd
https://nx5746.your-storageshare.de/s/wxbY3TrwfAoYxb9
https://nx5746.your-storageshare.de/s/wxbY3TrwfAoYxb9
https://github.com/peleiden/luke
https://github.com/studio-ousia/luke


Methods Technical University of Denmark

is inspired by the original LUKE code, but we have made efforts to make it more

approachable focusing on code readability and documentation.

Rewriting code bases always carries a risk of introducing bugs. Despite borrowing

heavily from Yamada et al., we did introduce some errors in the code that had to be

fixed, forcing multiple restarts of the training. These ranged from domain-specific ones

such as accidentally leaving category pages in the entity vocabulary to general errors

such as copying pointers instead of the memory stored at them. Our answer to iron

these out was unit testing of modular code, but we still have work to do in expanding

test coverage.

Floating Point Precision The model was trained with PyTorch Automatic Mixed

Precision (AMP) [Cona], which – ideally, at least – should decrease training time with

little to no penalty to accuracy [HTC20]. This is partially due to half-precision cal-

culations being simpler, and partially due to the lower memory requirements, allowing

larger subbatches and thus better GPU utilization. However, as Figure 4.2 shows, AMP

works as intended when training on NVIDIA Tesla V100s, but had the opposite effect

when training on NVIDIA A100s.

AMP works by automatically casting parts of the model to half-precision rather

than the usual single precision. Some layers are more sensitive than others to precision.

For instance, linear layers are always cast to half-precision, but the loss is calculated

using single precision. Due to the smaller precision, underflow in the gradients is a risk.

This is handled by scaling up the loss and then scaling down the gradients accordingly.

[Cona]

Distributed Training and Runtime As transformer training requires significant

compute, distributing the training over multiple GPUs can yield considerable speedups.

Especially given the parallelizable nature of the transformer compared to recurrent

neural network variations, training should scale fairly well on multiple GPUs [Vas+17].

The pretraining took roughly a week. Due to varying GPU availability, varying

numbers of A100s and V100s were used for pretraining and the experiments in sec-

tion 6.1. The main pretraining took approximately a week and used 2-4 V100s. For

comparison, Yamada et al. trained LUKE using 16 V100s for 30 days. [Yam+20]

We measured the time needed to train for one epoch on different cluster configura-

tions. The results are shown on Figure 4.2.

Page 37 of 89



Methods Technical University of Denmark

Figure 4.2: How GPU models, the number of GPUs, and AMP influences pretraining
runtime. Sub-batch size (SB) is included, as it is important for GPU utilization. The
measurements were taken with da-BERT weights locked. The V100s act mostly as
expected with close to optimal scaling and AMP decreasing runtime. Surprisingly,
however, the A100s, while faster, scale poorly and are slower when using AMP. The
poor scaling is partially explained by Amdahl’s law [Kle11]: The sequential parts of the
code do not get faster along with the GPU and so take up a relatively larger amount
of the runtime. The A100s also do not have an NVLink bridge unlike the V100s and
must therefore communicate over PCIe, which is slower. The poor AMP performance,
however, is harder to explain. According to Hans Henrik Sørensen, DTU Computing
Center, it is caused by different gemm implementations, but we have not investigated it
any further. Python 3.8.4 using PyTorch 1.8.1 compiled with CUDA 11.1 was used.

Page 38 of 89



5. Results

5.1 English LUKE Reproduction

Model Over 5 repetitions Micro avg. LOC PER ORG MISC

LUKE large
Mean F1 [ %] 94.0 95.0 97.2 93.6 85.2
Std. [ %] 0.2 0.1 0.1 0.3 1.0

LUKE base
Mean F1 [ %] 93.4 94.6 96.8 92.4 84.9
Std. [ %] 0.2 0.2 0.2 0.2 0.7

Table 5.1: Observed English LUKE results over five repetitions of fine-tuning and
evaluating LUKE on CoNLL-2003 for each model size.

Yamada et al. report micro avg. F1 scores of 94.3 % and 93.3 % for LUKE large and

base, respectively [Yam+20]. In both cases, the reported scores are within two standard

deviations on observed F1 scores, which were estimated on training repetition. This

is expectable, and we conclude that the reproduction was successful. However, the

variability of fine-tuning is also highlighted here and will be discussed in Section 6.2.

Page 39 of 89



Results Technical University of Denmark

5.2 Pretraining of DaLUKE

Figure 5.1: Cross entropy loss throughout pretraining for both masking tasks as well
as effective (weighted) loss, which is the average of the two. The loss on the entity
masking (green) seems to drive close to all development in the average loss (blue) after
the first few epochs.

Page 40 of 89



Results Technical University of Denmark

Figure 5.2: Masked words and masked entity accuracy throughout pretraining. The
curves are smoothed with a rolling average. The frequency of exact correct word guesses
quickly rests at 20-25 % while the new task of entity masking starts from 0 and takes
time to learn.

The loss shown on Figure 5.1 mirrors the accuracy with masked word loss converging

quickly, after which falling entity loss becomes the driving factor behind the falling total

loss. The masked words and masked entity accuracies are shown on Figure 5.2. The

former converges quickly, achieving close to top accuracy in less than a tenth of the full

training time, while the latter keeps improving throughout the training. That the MLM

performance from BERT is quickly maximized is, however, perhaps not surprising, as

many of the relevant weights were initialized from an already trained model which has

been pretrained on the same task.

Top k accuracy [ %] k = 1 k = 3 k = 5 k = 10 k = 25 k = 50
Masked words 24.8 31.5 35.0 40.3 48.2 54.0
Masked entities 56.2 68.6 73.6 79.8 86.4 90.3

Table 5.2: The main pretrained model performance in the last of 150 epochs. We note
that the model has learned to guess masked entities consistently as the correct entity
very often is one of the top 50 guesses.

Page 41 of 89



Results Technical University of Denmark

5.3 Danish Named Entity Recognition

5.3.1 Main Benchmark: Our Results and Reproduction

Model name Trained on
Micro Avg. [ %] Class F1 [ %]

F1 Prec. Rec. F1 �MISC LOC PER ORG MISC
DaLUKE DaNE 82.9 ±3 84.7 81.2 85.2 ±3 87.0 94.2 73.2 74.6
DaNLP da-BERT DaNE – – – 84.0 ±3 83.9 92.8 73.0 –
NERDA m-BERT DaNE 79.2 ±3 82.1 76.5 81.7 ±4 83.5 92.6 66.9 70.3
NERDA Ælæctra DaNE 70.6 ±4 76.1 65.8 74.5 ±4 77.3 86.9 56.2 56.4
DaCy medium DaNE 78.3 ±3 78.3 78.3 80.5 ±4 84.0 90.4 66.2 70.1
DaCy large DaNE 84.9 ±3 86.2 83.7 86.9±3 85.3 94.2 79.0 78.1
DaNLP spaCy DaNE 73.8 ±4 76.1 71.5 75.7 ±4 76.0 87.8 59.6 66.1
DaNLP Flair DaNE – – – 81.8 ±4 84.8 93.2 63.0 –
Polyglot Wikipedia – – – 64.2 ±4 65.0 78.7 39.3 –
daner ITU DDT – – – 56.5 ±5 59.4 70.4 28.3 –

Table 5.3: Results of Danish NER models of the DaNE [Hvi+20] testing dataset
consisting of 565 sentences. ± on the average F1’s is notation for the approximate 95%
confidence interval calculated using eq. (4.3). Missing numbers are due to some models
not being trained on the MISC annotations. We see the transformer-based models
dominate the scores, spearheaded by the large implementation of DaCy.

Figure 5.3: To the left, the development of loss and accuracy on the DaNE training
and dev. sets. Almost all learning happens in the first few epochs, hinting that the
pretrained model already holds much of the language knowledge used for NER. To the
right, the number of predictions of each class on the dev. set is shown along with the
actual number of each class where MISC and ORG initially are under-predicted.

Page 42 of 89



Results Technical University of Denmark

We conclude, when comparing with the June 2021 DaNLP NER table5.1[Bro+21], that

the results of all NER results previously reported on DaNE are successfully reproduced

with most scores corresponding exactly and a few varying within a percentage point.

Taking these results at face value, DaLUKE fails to achieve SOTA on DaNE, being

beaten only by DaCy large but surpassing da-BERT, on which it is based. However,

when considering the approximate uncertainty estimates, the small test set makes these

conclusions baseless, instead identifying a group of transformer-based NER models lead-

ing the scoreboard.

Still, the considerable improvements in some categories when comparing to da-

BERT is taken as an encouragement, suggesting that the extra pretraining and entity

understanding indeed has added some knowledge to the model. The improvements of

DaLUKE compared to da-BERT are examined further in the following chapter. Ad-

ditionally, it is noted from considering the differences between algorithm performance

across classes that future analysis of DaLUKE should examine how entity class perfor-

mance is related to article bias in the Wikipedia pretraining dataset.

Ultimately, DaLUKE performs at a high level and shows promise for entity modeling.

5.3.2 Additional Datasets

Model name Trained on
Micro Avg. [ %] Class F1 [ %]

F1 Prec. Rec. F1 �MISC LOC PER ORG MISC
DaLUKE DaNE 69.0 ±5 60.5 80.3 78.9 ±4 81.7 92.5 56.0 13.2
DaNLP da-BERT DaNE – – – 79.2±4 78.6 93.4 56.9 –
NERDA m-BERT DaNE 66.4 ±5 58.1 77.4 76.6 ±4 76.3 92.1 52.5 12.4
NERDA Ælæctra DaNE 66.3 ±5 60.0 74.1 76.1 ±4 74.9 90.3 53.0 13.2
DaCy medium DaNE 65.6 ±5 55.7 79.7 75.0 ±4 76.1 92.1 48.7 12.6
DaCy large DaNE 68.5 ±5 58.9 81.8 79.0 ±4 79.0 92.5 58.0 15.5
DaNLP spaCy DaNE 64.1 ±5 55.9 75.1 72.7 ±5 72.7 88.3 46.5 12.3
DaNLP Flair DaNE – – – 76.2 ±4 80.2 94.4 36.1 –
Polyglot Wikipedia – – – 64.1 ±5 69.7 78.4 24.7 –
daner ITU DDT – – – 59.8 ±5 58.2 73.6 26.1 –

Table 5.4: Danish NER algorithm performance on the Plank [Pla19] test set consisting
of 565 sentences. These models fine-tuned on DaNE perform very poorly on the Plank
MISC entities in particular, highlighting NE annotater disagreement.

5.1Table is available at github.com/alexandrainst/danlp/blob/master/docs/docs/tasks/ner.
md and was compared on 27/6, 2021 at commit SHA 584d5c7.

Page 43 of 89

github.com/alexandrainst/danlp/blob/master/docs/docs/tasks/ner.md
github.com/alexandrainst/danlp/blob/master/docs/docs/tasks/ner.md


Results Technical University of Denmark

Model name Trained on
Micro Avg. [ %] Class F1 [ %]
F1 Prec. Rec. LOC PER ORG

DaLUKE DaNE 66.8±0.1 72.7 61.9 73.5 74.9 44.2
DaNLP da-BERT DaNE 65.7 ±0.1 68.6 63.2 72.1 74.5 40.1
NERDA m-BERT DaNE 63.4 ±0.1 61.3 65.7 70.7 76.9 48.4
NERDA Ælæctra DaNE 48.7 ±0.1 48.3 49.0 56.6 69.9 24.0
DaCy medium DaNE 60.1 ±0.1 58.4 61.8 70.7 73.7 39.3
DaCy large DaNE 64.6 ±0.1 62.2 67.1 74.1 77.2 49.8
DaNLP spaCy DaNE 59.6 ±0.1 58.5 60.6 68.7 71.6 38.8
DaNLP Flair DaNE 65.0 ±0.1 70.7 60.2 70.1 74.4 43.7
Polyglot Wikipedia 62.9 ±0.1 66.3 58.2 72.4 69.2 35.3
daner ITU DDT 46.6 ±0.1 51.5 42.5 56.2 54.5 14.8

Table 5.5: Results of Danish NER models on the WikiANN [Pan+17; RLC19] test set
consisting of 10,000 sentences. This large dataset containing ∼ 14 · 103 entities results
in small finite sample uncertainties on model performance making DaLUKE appear as
a clear winner on this Wikipedia-based dataset.

When fine-tuned on DaNE, DaLUKE achieves SOTA on WikiANN and slightly tops

DaCy large on Plank. This is unexpected given that DaLUKE was beaten on the

DaNE test set. It may indicate a better generalization ability, which, if true, is indeed

a desirable property. However, less exciting reasons for this behaviour may well be

more likely. With Plank, the difference is minuscule and clearly within random error.

The performance discrepancy on WikiANN appears surely significant, but may have

an even less interesting reason: DaLUKE is pretrained directly on similar, annotated

Wikipedia data, compromising the principle that the training and test sets should be

strictly disjoint.

Page 44 of 89



6. Experiments and Discussion

6.1 What Is Going on in the Pretraining?

To investigate what affects effectiveness of the pretraining, several ablation studies are

performed. Unless stated otherwise, the main hyperparameters from Table 4.3 are

used, but with 50 epochs due to limited compute. As the experiments were trained on

a 1×A100 configuration, which exhibits issues with AMP, single precision was used for

them all.

6.1.1 The Parameter Population

The first model analysis is a global view of the DaLUKE parameters. Figure 6.1 shows

the model parameter value distribution before and after pretraining divided by whether

a given parameter was initialized from da-BERT.

Two observations stand out: Firstly, DaLUKE-exclusive parameters, which consist

of entity embeddings and the entity part of the decoder, are spread out. This includes

the notable spike at the left figure that comes from biases and layer normalizations

being initialized to 0. Secondly, the shared parameters are more or less unchanged in

their distribution. This makes sense, as they are already trained, hence further training

on similar data with a similar task should not result in any significant change. Fur-

thermore, all parameters from da-BERT (barring the three sets of DaLUKE-exclusive

query matrices) are not changed for the first half of the training. When they finally are

unlocked, both the loss and learning rate have dropped significantly, resulting in less

change.

Page 45 of 89



Experiments and Discussion Technical University of Denmark

Figure 6.1: The parameter distribution before and after pretraining, including the
decoder. DaLUKE ∩ da-BERT (orange) refers to the parameters that transferred from
da-BERT, including the query matrices in the entity-aware self-attention. DaLUKE
\ da-BERT (green) are the remaining parameters. These are made up of the entity
embeddings (58 million parameters) and the entity decoder (58 million parameters).
In total, the model has 273 million parameters. Note that DaLUKE ∩ da-BERT and
DaLUKE \ da-BERT are not full probability densities but rather subsets that together
make up the DaLUKE graph, which is a full probability density.

It is noted that the new DaLUKE parameters after training form a distribution ap-

pearing Gaussian. These are mostly made up of entity embeddings subjected to layer

normalizations which we suspect to be influential on this shape.

6.1.2 Effect of More Pretraining

The goal of the pretraining is to infuse the model with general language understanding,

but it is not immediately clear how to measure such an abstract concept. The simplest

idea is to use the loss and, by extension, the top k accuracies, but this approach is not

exempt of issues: Without a validation set, overfitting can be disguised as improvement,

especially on small datasets. Furthermore, decreases in loss could from the decoder part

of the MLM, which is irrelevant to downstream tasks.

One way to glimpse into the pretraining black box is to observe the performance

of downstream language tasks on checkpoints produced during the pretraining. Such

Page 46 of 89



Experiments and Discussion Technical University of Denmark

checkpoints were produced at every fifth epoch for at total of 32 saved models. At every

checkpoint, fine-tuning and evaluation on DaNE was performed using the hyperparam-

eters from Table 6.2. The result is shown in Figure 6.2.

Figure 6.2: Fine-tuning results on DaNE using different pretraining checkpoints.

This result of 0 correct predictions at epoch 0 shows that pretraining is necessary to

get good performance on NER. Somewhat surprisingly, however, after five epochs – or

maybe even less – additional pretraining does not improve downstream results. In fact,

the curve almost perfectly mirrors the MLM accuracy from Figure 5.2, indicating that

the model primarily relies on its BERT subset for NER.

It should be noted that NER is just one downstream task and that other such tasks

may see more benefit from additional pretraining. However, another explanation may

be more probable: The Danish Wikipedia is so small that it only takes a few epochs for

DaLUKE to learn what it can from it – especially given that Wikipedia made up part

of da-BERT’s training data, so it already has been seen [Bot19]. This would also help

to explain the much faster convergence of word accuracy compared to entity accuracy.

The pretraining dataset only has a little over 100 million subword tokens (see Table

3.1) and 7.2 million entity annotations – a small number for a model with 270 million

parameters and an architecture with a well-known near insatiable thirst for data.

Page 47 of 89



Experiments and Discussion Technical University of Denmark

6.1.3 Baseline

To set up a baseline model, the main model is retrained using only 50 epochs, but

otherwise using the same hyperparameters, shown in Table 4.3. This allows for a

comparison to ablation studies where compute resources did not allow a full 150 epoch

pretraining.

The final results of this pretraining are summarized in Table 6.1 with the accuracy

development shown on Figure 6.3.

Model Top k accuracy [ %] k = 1 k = 3 k = 5 k = 10 k = 25 k = 50

Baseline
Masked words 24.2 30.9 34.4 39.7 47.7 53.6
Masked entities 28.8 39.0 43.8 50.6 59.6 66.3

Table 6.1: The top k accuracy of the baseline model in the 50’th and last epoch.

Figure 6.3: Baseline masked language and masked entity accuracy throughout pretrain-
ing. All curves are smoothed using a rolling average.

The model was subsequently fine-tuned for NER on DaNE following the approach

described in Section 4.2.2 and the following hyperparameters were non-systematically

selected:

Page 48 of 89



Experiments and Discussion Technical University of Denmark

Parameter Value

Epochs 10
Batch size 16
Peak learning rate 2 · 10−5

LR warmup steps proportion 6 %
Dropout (pretrained model) 0.1
Dropout (final, linear layer) 0.025
Weight decay 0.05
Loss weighting No

Table 6.2: Hyperparameters for baseline fine-tuning experiment and the following ab-
lation experiments.

This resulted in the following performance on the DaNE test dataset.

Model
F1 [ %] Precision [ %] Recall [ %]

Avg. LOC PER ORG MISC Avg. Avg.

Baseline 82.4 ±3 89.5 92.9 74.4 68.8 86.7 78.4

Table 6.3: The baseline fine-tuning results

The results of the baseline experiment along with the following experiments are shown

together in a final overview at Section 6.1.8.

6.1.4 Entity-aware Self-attention

The entity-aware self-attention mechanism, one of Yamada et al.’s key contributions to

the transformer, was used for our pretraining task. An experiment using the traditional

attention, which does not discriminate between word and entity tokens, was performed.

The produced model yields worse results, shown at Table ??, than the baseline

model.

Model Top k-accuracy [ %] k = 1 k = 3 k = 5 k = 10 k = 25 k = 50

BERT attention
Masked words 20.6 26.3 29.4 34.6 42.4 48.7
Masked entities 12.3 21.0 25.7 32.8 42.9 51.5

Table 6.4: The top k accuracy of the pretrained model trained without entity-aware
self-attention in the 50’th and last epoch.

After fine-tuning, the following results were achieved:

Page 49 of 89



Experiments and Discussion Technical University of Denmark

Model
F1 [ %] Precision [ %] Recall [ %]

Avg. LOC PER ORG MISC Avg. Avg.

BERT attention 79.6 ±3 85.8 92.8 70.9 64.8 84.5 75.2

Table 6.5: The fine-tuning results of the traditional attention experiment.

From the lower NER and masked language performances, it is concluded that this

mechanism explicitly modeling the difference between the two token domains is an

important part of the DaLUKE results.

6.1.5 Dataset Augmentation

A key addition to the pretraining pipeline was the addition of extra entity annotations

not already in the Wikipedia articles themselves using pattern matching as explained

in Section 3.1.1. This resulted in a 47% growth in the number of annotations as shown

in Table 3.1. It was argued that this should improve performance which is checked by

pretraining a model with the original, un-altered data.

The pretraining terminated to the following performance.

Model Top k-accuracy [ %] k = 1 k = 3 k = 5 k = 10 k = 25 k = 50

No data aug.
Masked words 25.3 32.2 35.6 40.9 48.8 54.6
Masked entities 34.0 42.9 47.2 53.5 62.3 68.8

Table 6.6: The top k accuracy of the pretrained model trained without dataset aug-
mentation in the 50’th and last epoch.

At a first glance, these masked language modeling results, strictly dominating the num-

bers for the baseline, seem to suggest that the dataset augmentation was ill-advised.

Apart from the obvious problem of judging a model by its performance on the training

dataset, there is a large issue with the metric in this case: The dataset augmentation

changed the benchmark itself as the masking task of the baseline model also includes

automatically annotated, and thus somewhat dubious, entity links. This can explain

the clear gain in entity masking performance of this experiment. Whether this reason

has any merit in explaining the increased word accuracy found in this ablation study

is less clear to us and relates to the model synergy effects in this joint task.

As a more unbiased benchmark, this model was fine-tuned on the DaNE dataset

using the hyperparameters at Table 6.2 resulting in the following performance:

Page 50 of 89



Experiments and Discussion Technical University of Denmark

Model
F1 [ %] Precision [ %] Recall [ %]

Avg. LOC PER ORG MISC Avg. Avg.

No data aug. 83.0 ±3 84.4 95.1 76.4 72.1 85.4 80.8

Table 6.7: The fine-tuning results of the dataset augmentation pretraining experiment.

The ablation study gets a substantially higher recall than the baseline resulting in

a higher micro average F1 score on the NER task, though the baseline outperforms

in precision. All in all, these benchmarks cannot be used to support our theorized

problem of false negatives in the volunteer-produced annotations, or at least not that

it is mitigated by this augmentation approach.

As the addition of these 47% annotations, which can be called bronze standard, did

not directly stop the learning, we still propose such automated annotation as an avenue

for further development of DaLUKE.

6.1.6 Impact of Danish BERT

As described in section 2.5, many of the weights are initialized from a base transformer.

This transfer learning method ideally gives DaLUKE all the contextual language un-

derstanding of da-BERT. To test this hypothesis, a pretraining is conducted without

initializing the weights to da-BERT.

Model Top k accuracy [ %] k = 1 k = 3 k = 5 k = 10 k = 25 k = 50

No transfer Masked words 47.9 59.3 63.9 69.8 76.5 81.0
learning Masked entities 81.7 87.2 88.9 90.9 93.2 94.6

Table 6.8: The top K accuracy of the pretrained model trained without initializing
weights from da-BERT in the 50’th and last epoch.

It is immediately clear from Table 6.8 that this model performs noticeably better at

both the masked word and masked entity tasks than the other models so far. This

is despite starting from 0 in the masked word task (see Figure 6.4). Because of this,

good NER performance could reasonably be expected. This did not happen - on the

contrary, results were much worse than the baseline.

Page 51 of 89



Experiments and Discussion Technical University of Denmark

Model
F1 [ %] Precision [ %] Recall [ %]

Avg. LOC PER ORG MISC Avg. Avg.

No transfer learning 71.0 ±4 79.0 83.5 55.4 61.7 76.9 65.9

Table 6.9: The fine-tuning results of the experiment where weights were trained from
scratch.

Figure 6.4: Development of the masked word and entity accuracies during pretraining
without initializing from da-BERT weights. All curves are smoothed using a rolling
average.

This result is unintuitive in that a model scoring highly on both masking tasks can

underperform on NER. While the running fine-tuning presented in Section 6.1.2 showed

decoupling between entity masking and NER results, this result further raises the issue

of the model overfitting on the limited dataset even when the masking of words and

entities is dynamic.

Thus, the transfer learning from da-BERT turns out to be a help here. From Figure

6.4, the initialization seems to provide two things other than initial MLM accuracy:

• A regularization effect that prevents the model from overfitting to the dataset.

• Increased pretraining stability. The accuracy curves contain multiple of sudden

jumps and drops that are much rarer in other pretrainings.

Page 52 of 89



Experiments and Discussion Technical University of Denmark

This stabilization effect is supported by the stable distribution of parameters inherited

from da-BERT shown at Figures 6.1. It should be noted that because no weights

came from da-BERT, no weights were ever locked throughout the pretraining in this

experiment. A similar experiment with weights unlocked and initialization from da-

BERT showed pretraining accuracies much closer to the baseline though with somewhat

higher entity prediction accuracy, indicating that the regularizing effect is indeed the

transfer learning from da-BERT. The details of this extra experiment are listed in

Appendix A.1.

6.1.7 Entity Vocabulary Size

For the English LUKE, Yamada et al. used an entity vocabulary of the 500 · 103

entities [Yam+20, Sec. 3.4] even though the English Wikipedia contains ∼ 6 · 106

content pages6.1. For the Danish Wikipedia, however, the number of content pages6.2is

∼ 267 · 103 resulting in the DaLUKE entity vocabulary containing ∼ 225 · 103 entities.

As this is a much smaller world of entities, the entity vocabulary of the main DaLUKE

model was not cut by frequency.

An experiment was performed where entities mentioned less than 50 times were

excluded from the data, resulting in a vocabulary of 19,119 entities. This was done

on the augmented data explained in Section 3.1. After pretraining for 50 epochs, the

following performance was observed.

Model Top k accuracy [ %] k = 1 k = 3 k = 5 k = 10 k = 25 k = 50

Limited entity vocab.
Masked words 23.9 30.5 33.9 39.2 47.1 53.0
Masked entities 30.6 42.2 48.9 55.8 65.9 66.3

Table 6.10: The top k accuracy of the entity vocabulary-limited model in the 50’th
and last epoch.

The performance on the word prediction task is slightly worse for this entity vocabulary

experiment, while higher scores are seen on the masked entity task. Like the data

augmentation experiment, attention must again be put on the changes in the benchmark

itself; the accuracy of 31% is calculated in a ∼ 20 · 103 class problem while the baseline

accuracy of 29 % is calculated over almost ten times as many classes.

6.1English Wikipedia Statistics: https://en.wikipedia.org/wiki/Special:Statistics. Visited
March 3, 2021.

6.2Danish Wikipedia Statistics: https://da.wikipedia.org/wiki/Speciel:Statistik Visited
March 3, 2021.

Page 53 of 89

https://en.wikipedia.org/wiki/Special:Statistics
https://da.wikipedia.org/wiki/Speciel:Statistik


Experiments and Discussion Technical University of Denmark

The NER performance of this model was, following the approach in the previous

experiments, found to be close to the performance of the baseline with an average F1

0.2 % points worse.

Model
F1 [ %] Precision [ %] Recall [ %]

Avg. LOC PER ORG MISC Avg. Avg.

Limited entity vocab. 82.2 ±3 89.6 93.5 74.0 68.7 85.0 79.5

Table 6.11: The fine-tuning results of the entity vocabulary limiting pretraining exper-
iment.

Conclusively, the results of this experiment are close to the baseline, signifying robust-

ness in the approach. However, with these hyperparameters, the removal of entities

does not seem beneficial for the Danish dataset.

This experimental filtering of the DaLUKE entities preserves 7 % of the content

pages, while 8% were preserved for the English LUKE. Intuitively, it would make sense

that the same proportional filtering works better in English, as the absolute number

of entities making up the implicit knowledge base of the model might be important:

Smaller datasets, corresponding to smaller language areas, do not equate smaller shared

worlds of named entities.

6.1.8 Summary

Table 6.12 and 6.13 show the masked language and entity modeling results and fine-

tuning results, respectively, of all the just discussed experiments for comparison.

Model Top k-accuracy [ %] k = 1 k = 3 k = 5 k = 10 k = 25 k = 50

Baseline
Masked words 24.2 30.9 34.4 39.7 47.7 53.6
Masked entities 28.8 39.0 43.8 50.6 59.6 66.3

BERT attention
Masked words 20.6 26.3 29.4 34.6 42.4 48.7
Masked entities 12.3 21.0 25.7 32.8 42.9 51.5

No data aug.
Masked words 25.3 32.2 35.6 40.9 48.8 54.6
Masked entities 34.0 42.9 47.2 53.5 62.3 68.8

No transfer learning
Masked words 47.9 59.3 63.92 69.8 76.5 81.0
Masked entities 81.7 87.2 88.9 90.9 93.2 94.6

Limited entity vocab.
Masked words 23.9 30.5 33.9 39.2 47.1 53.0
Masked entities 30.6 42.2 48.9 55.8 65.9 66.3

Table 6.12: Overview of final pretraining results for all the experiments presented
previously. The best result for each metric is shown in boldface with second-best result
underlined (motivated by the quite boring distribution of bests).

Page 54 of 89



Experiments and Discussion Technical University of Denmark

Model
F1 [ %] Precision [ %] Recall [ %]

Avg. LOC PER ORG MISC Avg. Avg.
Baseline 82.4 ±3 89.5 92.9 74.4 68.8 86.7 78.4
BERT attention 79.6 ±3 85.8 92.8 70.9 64.8 84.5 75.2
No data augmentation 83.0 ±3 84.4 95.1 76.4 72.1 85.4 80.8
No transfer learning 71.0 ±4 79.5 83.5 55.4 61.7 76.9 65.9
Limited entity vocab. 82.2 ±3 89.6 93.5 74.00 68.7 85.0 79.5

Table 6.13: Overview of the pretraining experiment fine-tuning results presented in the
previous sections. Many of the differences are small and within the 95 % finite sample
margin of error, so the performance must be judged in conjunction with masked task
performance.

6.2 Fine-tuning Performance

As with pretraining, fine-tuning has interesting elements that are worth investigating

further. For these experiments, the main pretrained model from Section 5.2 are used

but with the optimized fine-tuning hyperparameters from Table 4.4. Following the

pretraining experiments, all results are reported with MISC.

6.2.1 Stability of LUKE Fine-tuning

Reproducibility of English LUKE For the reproduction of the English LUKE, our

results were initially underwhelming as five repetitions of the fine-tuning of LUKE large

on CoNLL-2003 consistently slightly underperformed the reported result of 94.3% micro

average as seen at Table 6.14. This disappointment was backed up by an approximate

95% confidence interval on the true mean of the avg. F1 score being marginally below

the reported value6.3.

After investigation, this, to us, somewhat surprising result was revealed to be over-

turned when fine-tuning with Python version 3.6 and PyTorch 1.2 instead of using

newer versions as done in the initial run. Using these correct versions, the same as Ya-

mada et al. reported in their package file, our results were much closer to the reported

numbers as shown in Section 5.1.

6.3Using the one-sample Student t-based confidence interval relying on an unchecked normality
assumption on means, [Bro+18, Method 3.9] our five repetitions yield a 95 % confidence interval of
[92.53 %, 94.26 %]. To conclude a significant difference, more repetitions are necessary, but we were
initially worried by this result.

Page 55 of 89



Experiments and Discussion Technical University of Denmark

All in all, the slight hiccups in reproducing the fine-tuning results show the dif-

ficulties in empiric evaluations of deep methods strongly relying on indeterminism –

especially as the underlying framework, PyTorch, does not guarantee reproducible re-

sults across versions and platforms, even if using identical seeds for the random number

generator [Conc].

Model Over 5 repetitions Micro avg. LOC PER ORG MISC

LUKE large
Mean F1 [ %] 93.4 95.2 97.2 93.5 85.2
Std. [ %] 0.07 0.2 0.08 0.2 0.4

Table 6.14: Results when pretraining and evaluating LUKE with Python version 3.8
and PyTorch 1.4. Using these software versions, the model seemingly underperforms
the reported accuracy.

Random number generation variance The same repetition of the fine-tuning pro-

cedure carried out for English LUKE is done for the main DaLUKE model by training

with five different random number generation (RNG) seeds. The results are shown in

Table 6.15.

Seed
F1 [ %] Precision [ %] Recall [ %]

Avg. LOC PER ORG MISC Avg. Avg.
1 83.7 85.8 94.3 78.0 72.3 88.7 79.2
2 81.5 84.3 92.2 71.9 74.7 83.9 79.3
3 84.5 88.6 93.8 78.0 75.1 86.9 82.2
4 81.3 82.4 93.1 72.8 72.8 83.8 79.0
5 82.4 84.9 93.2 74.6 74.0 84.9 80.1
Mean 82.7 85.2 93.3 75.0 73.8 85.6 80.0
Std. 1.4 2.3 0.8 2.8 1.2 2.1 1.3

Table 6.15: Repeating the fine-tuning procedure of the main model, reporting results.

Unfortunately, the standard deviation is rather large compared to the margins between

many of the experiments. For reference, seed 1 was used for all experiments bar this

one. The stochasticity of the fine-tuning procedure, possibly driven by the limited size

of the training set, casts doubt on NER comparisons. As Table 6.15 shows, one of the

models (seed 3) even achieves SOTA.

Dataset split variance Another way to look at fine-tuning indeterminism is the

randomness in the dataset. Predefined splits, chosen randomly by the dataset creators

Page 56 of 89



Experiments and Discussion Technical University of Denmark

at the Alexandra Institute [Hvi+20], into training, development and testing datasets

were used for all experiments. A less noisy estimate of generalization performance is

generally obtained by K-fold cross-validation as opposed to this simple hold-out testing

method [Bis06, Sec. 1.3]. This is performed using K = 5 random splits as this gives

a training set of approximately the same size as for the predefined splits, that is, 4383

examples in the DaNE splits and 4410 in cross-validation training. The cross-validation

test sets will thus be larger, as no development set is used.

Split
F1 [ %] Precision [ %] Recall [ %]

Avg. LOC PER ORG MISC Avg. Avg.
1 89.1 91.5 95.1 82.5 85.1 89.8 88.5
2 86.1 87.5 94.2 76.0 82.2 88.2 88.1
3 86.9 89.7 93.5 76.7 84.5 88.3 85.5
4 87.4 90.6 94.6 81.2 79.2 87.8 87.1
5 87.6 90.9 95.3 79.0 86.9 88.1 87.1
Mean 87.4 90.0 94.5 79.1 83.6 88.4 87.3
Std. 1.1 1.6 0.7 2.8 3.0 0.8 1.7

Table 6.16: 5-fold cross-validation results over the DaNE dataset. The training, dev.
and test sets were all combined and then split in five different ways with each split
having 80 % training data and 20 % test data, on which the F1 score is calculated.

These results at Table 6.16 imply that the DaNE testing set performance of 82.89 %

understates the accuracy of this method. An explanation can be that the small testing

set (565 sentences) simply contains more difficult examples than other parts of the

dataset. This theory is substantiated by the differing distributions of entities between

DaNE splits (testing contains fewer LOC’s and more ORG’s, see Figure 3.1) and that

we consistently observed higher performance on the development set than on the testing

(such as in the hyperparameter optimization results at Table A.3).

It must be noted that we cannot claim to present an unbiased estimate of the

generalization performance, even on datasets following the same distribution, as the

main experiment hyperparameters, that were also used here, were chosen based on

performance on much of the data.

Dataset generalization ability It was noted in the results section that DaLUKE

appears to generalize well to the two other Danish NER datasets. To add detail to the

ability to generalize across these three datasets, DaLUKE is also fine-tuned for the two

other datasets and the results for each model are reported across datasets at Table 6.17.

Page 57 of 89



Experiments and Discussion Technical University of Denmark

Test set Model trained on
Micro Avg. [ %] Class F1 [ %]

F1 Prec. Rec. F1 �MISC LOC PER ORG MISC
DaNE DaNE 82.8 84.6 81.1 85.1 87.0 94.1 73.1 74.5
DaNE Plank 69.0 60.5 80.2 78.8 81.6 92.5 56.0 13.2
DaNE WikiANN – – – 66.8 73.4 74.8 44.1 –
Plank DaNE 63.4 80.8 52.1 73.1 76.0 90.4 45.6 4.6
Plank Plank 74.9 78.0 72.0 74.9 76.2 90.3 50.5 41.0
Plank WikiANN – – – 58.4 62.8 74.6 21.3 –
WikiANN DaNE – – – 67.8 67.9 87.5 51.2 –
WikiANN Plank – – – 60.5 68.5 88.0 29.2 –
WikiANN WikiANN – – – 93.4 93.4 94.7 88.3 –

Table 6.17: Results when fine-tuning and evaluating across datasets. Results without
the MISC categories are included as WikiANN does not include this category.

As the table shows, generalizability is not a given. While some LOC and PER general-

ize fairly well between datasets, ORG, and especially MISC, see very poor performance

when evaluated on another dataset than the model was fine-tuned on. One cause for

this may be the different distributions of labels between datasets. Another is the un-

derstanding the entity category definitions. WikiANN is automatically annotated and

so is obviously different from the DaNE and Plank, where human language understand-

ing directly played a role. However, as DaNE and Plank have different annotations,

clearly the authors had different interpretations of what the categories meant (as is

especially clear with the MISC category), even though both used the CoNLL-2003

guidelines. These issues cast doubt on the generalizability of NER. [Hvi+20; Pla19;

Pan+17; TD03]

6.2.2 Class-weighted Loss

Cross entropy loss weighted by the number of training examples in each class was

speculated to improve performance on the class-imbalanced NER task in which 99.3 %

of DaNE spans are not entities. In the hyperparameter search, all combinations of

learning hyperparameters were also tried with this weighting of loss defined in eq. (4.4).

From the results at Table A.3, no general improvement could be seen when weighting,

and the best combinations were slightly worse when using this approach.

Two experiments with suboptimal hyperparameters of high learning rate, high

dropout, and low weight decay resulted in the model degenerating to predicting the pos-

itive entity classes much too often as seen from Table 6.18. Interestingly, this problem

was mitigated when using class-weighted loss, an unintuitive result in our estimation,

Page 58 of 89



Experiments and Discussion Technical University of Denmark

as we expected this weighting to motivate more positive predictions.

Batch size Learning rate Weight decay Dropout Loss weight F1 Precision Recall
8 5·10−5 0.01 0.1 Yes 84.9 80.4 90.0
8 5·10−5 0.01 0.1 No 31.5 19.8 76.4
16 5·10−5 0.01 0.1 Yes 82.6 76.8 89.3
16 5·10−5 0.01 0.1 No 29.2 18.0 76.0

Table 6.18: The only hyperparameter search experiments in which class-weighted loss
improved performance. The unweighted experiments suffer from very high recall and
low precision, corresponding to many false positives.

Conclusively, this idea did not benefit our main results, a testament to the robustness

of gradient learning, but gave an example of how strategies for class imbalance can be

necessary when the learning is less stable.

6.2.3 Feature Usage

An entity candidate forward passed through the final, classifying layer in the NER

model consists of the concatenation of word representations of the first and final sub-

word tokens, and, novelly for LUKE, a contextual representation of the entity span.

Two fine-tuning experiments are performed by altering this entity feature approach by

observing the performance when the subword token and entity representations are used

individually.

Model
F1 [ %] Precision [ %] Recall [ %]

Avg. LOC PER ORG MISC Avg. Avg.
Subword tokens 81.2 ±3 87.6 92.4 70.9 71.6 84.6 78.1
Entity tokens 81.7 ±3 85.1 93.2 71.4 74.0 85.0 78.6
Both (default) 82.8±3 87.0 94.1 73.1 74.5 84.6 81.1

Table 6.19: Fine-tuning results using different features for the classifier. Best results
are marked in bold.

From the results shown at Table 6.19, it is learned that the model can perform the

NER task with high performance using any of the three feature combinations. This is

explainable by both entities and words interacting with each others’ representations in

the transformer and thus affecting the final representations given to the classifier no

matter how these are chosen.

Page 59 of 89



Experiments and Discussion Technical University of Denmark

The experiment where only the entity tokens are used is arguably a simple and more

elegant NER approach as the selection of the first and last subword tokens to describe

a span seems arbitrary. These results make such an approach seem viable.

6.3 Predictions: What Is Learned?

Until this point, we have used the benchmark performance to judge the models. To get

a better understanding of the model, this section includes attempts to introspectively

interpret the model predictions.

6.3.1 Masked Language Predictions

To demonstrate DaLUKE’s ability to consider context, an example, and some variations

on it, are constructed. The example is given below with text sequence first, followed

by entity annotations.

• ”[MASK] blev angrebet af USA i 2003 som følge af terrorangrebet den 11. septem-

ber 2001. Saddam Hussein blev fanget i december.”

Truth: ”Irak”

• { [MASK] at word #1,

USA at word #5,

2003 at word #6,

Terrorangrebet den 11. september 2001 at words #11-15,

Saddam Hussein at words #12-13 }
Truth: ”Irak”.

First consider the shorter version: ”[MASK] blev angrebet af USA i 2003 som følge

af terrorangrebet d. 11. september 2001.” Given this text piece, DaLUKE predicts

”afghanistan”6.4 with a certainty of 15.95 %. While certainly a reasonable guess, it is

incorrect, as Afghanistan was attacked in 2001. For context, ”irak” is the second guess

of the model with 4.98% certainty. Furthermore, the masked ”Irak” entity is predicted

as ”USA”, but only with 7.61 % certainty. Adding the additional context of Saddam

Hussein being captured, however, makes DaLUKE predict ”irak” with 17.64% certainty.

Furthermore, the masked ”Irak” entity is predicted as ”Irak” with 15.57 % certainty.

6.4Model predictions are lower-cased, as the da-BERT tokenizer is lower-cased.

Page 60 of 89



Experiments and Discussion Technical University of Denmark

This example highlights how DaLUKE takes advantage of context to substantially

improve its predictions. The following examples show similar results. For simplicity,

no entities are annotated.

• ”I [MASK] spises der meget and.” – ”danmark” is predicted, which makes perfect

sense but was not ”december” as was first intended with the sentence.

”I [MASK] spises der meget and. Det er nemlig julemåneden.” – ”december” is

now predicted.

• ”Danmarks vigtigste lov er [MASK].” – ”bekendtgørelser”, which, while gram-

matically correct, does not make much sense in the context.

”Danmarks vigtigste lov er [MASK]. Den blev underskrevet i 1849.” – ”grundloven”

is correctly predicted.

6.3.2 DaLUKE Representations: The NER Geometry

DaLUKE produces contextualized representations of both words and entities and these

were, for the NER task, successfully adapted to show a level of language understand-

ing. These abstract representations which, ideally, condense language understanding

into 768 reals are here subjected to examination. The entity span representations, the

concatenation of contextual word and entity representations, vi ∈ R2304, are analysed

by conducting DaLUKE inference on every possible span in the DaNE training data,

and saving each result, thus producing a sequence of representations v1,...,975312. The

pretrained, but not fine-tuned model was used. Dimensionality reduction for visualiza-

tion on the representations was performed using principal component analysis (PCA),

the t-SNE (t-distributed stochastic neighbour embedding) algorithm [MH08], and the

UMAP (uniform manifold approximation and projection for dimensionality reduction)

algorithm [MHM20].

Implementation-wise, Sci-Kit Learn was used for t-SNE [Ped+11] and UMAP Learn

was used for UMAP [McI+18] with hyperparameters shown at Table 6.20. The set of

975,312 entity spans in the DaNE training set was randomly subsampled to 100K ex-

amples for these non-linear dimensionality reduction algorithms due to compute limita-

tions. Even with this limit and with hyperparameters chosen to favour global structure,

t-SNE and UMAP results were difficult to interpret, see Appendix B.1, motivating vi-

sualizing the dataset where only the 4,003 entity spans that corresponded to true entity

annotations were included.

Page 61 of 89



Experiments and Discussion Technical University of Denmark

Parameter Value
t-SNE perplexity 1,000
UMAP N neighbours 300
When only including positives
t-SNE perplexity 100
UMAP N neighbours 50

Table 6.20: The hyperparameters used for the dimensionality reduction algorithms
run on the DaLUKE entity representations. All other hyperparameters followed the
defaults in Sci-Kit Learn 0.24.1 and UMAP Learn 0.5.1.

Dimensionality reduction on the full dataset yields weakly structured visualizations of

the geometry, mostly dominated by giant clusters, as seen for PCA at Figure 6.5, which

also shows some clustering of true entities, also seen for the others in Appendix B.1.

The true, underlying dimensionality of the representations also seems high as the first

100 principal components only explain less than 60 % of data variance, see Figure B.3,

an indication of well-learned representations which, ideally, should exploit all vector

coordinates by having minimal latent dimension covariance.

Page 62 of 89



Experiments and Discussion Technical University of Denmark

Figure 6.5: The first four components visualized against each other from PCA per-
formed on all 975,312 possible entity spans in the DaNE training data. Spans in grey
are annotated entities in the dataset. The non-entity spans are more dispersed, intu-
itively making sense when considering that these include all possible spans of words
only limited by the maximum length of 16 subword tokens.

For the reductions in the positive label-only dataset, even more meaningful structure

is apparent with all three methods, at Figures 6.6, 6.7, 6.8, showing slight grouping

of entities in the same NER class, indicating that the pretrained model, even before

fine-tuning, represents language in a way that is close to the human-annotated dataset.

Page 63 of 89



Experiments and Discussion Technical University of Denmark

Figure 6.6: The first four components visualized against each other from PCA per-
formed on only the 4,003 entity spans that are annotated to a NE class in the DaNE
training data. Class separation is observed in multiple of the components, exemplifying
why the NER classification problem is solved well by DaLUKE which only requires few
epochs to distinguish classes.

Page 64 of 89



Experiments and Discussion Technical University of Denmark

Figure 6.7: t-SNE and UMAP projections of the DaNE dataset containing entity
spans with positive labels. While the classes are not strongly separated, some clusters
consisting of mostly one class are clearly visible in both projections.

The obvious question is what these plots mean: What do the clusters and the dimensions

themselves correspond to? This is far from a trivial task: While it is possible to correlate

the dimensionality reduced coordinates to the original dimensions, more clever thinking

is required to correlate both to human language understanding. We mostly leave this

task for further work but perform a case-based inspection of the predictions. Our

qualitative observations are summarized below with supporting examples in Table 6.21.

• The second principal component in the dataset including all data seem to express

something related to span position, as the highest values in this dimension almost

all correspond to examples with the span at the very end of the sentence. Based

on this, it makes sense that the plots in Figure 6.5 show the actual entities having

moderate values.

• Low values of the fourth principal component in the positive-label only dataset

seem to correspond to a very specific type of words: Adjectivizations of political,

geographic regions such as ”Danish” or ”English”. As explained in Section 3.2.3,

such entities should have the label MISC. This observation fits with Figure 6.6

showing MISC generally having the lowest 4th dimension values and LOC coming

in second.

• For t-SNE on the positive-only dataset, no such clear dependencies on coordinate

numeric values were observed, explainable by t-SNE not returning linear projec-

tions, but an approximate recreation of data point distances. Two examples very

Page 65 of 89



Experiments and Discussion Technical University of Denmark

close in t-SNE distances are shown in Table 6.21; these are also semantically very

similar in entity type and role.

• For UMAP fitted to the examples with positive labels, the clear cluster placed

around (−2.5, 7) is examined. Here, every entity is revealed to a derivative of the

word Danmark. Some of these are MISC (adjectivizations, demonyms) and some

LOC (Danmark itself) as seen at Figure 6.7.

Page 66 of 89



Experiments and Discussion Technical University of Denmark

Data Alg. Vector Class Example

Full PCA


−11.75
36.44
−4.85
16.42
...

 O De følgende 10 år er der ydet omkring 800 mio. kr. til
enkeltprojekter og forskningsinstitutter.

Full PCA


−8.78
32.14
−1.64
14.64
...

 LOC Den syriske leder ankom i g̊ar til Abu Dhabi efter besøg
i Saudi-Arabien og Kuwait.

Positives PCA


−0.23
−5.63
−9.60
−15.17

...

 MISC Det jugoslaviske præsidentr̊ad appellerede i sidste øje-
blik til FN om at undlade at iværksætte en boykot og
opfordrede til, at der i stedet indkaldes til en interna-
tional konference om konflikten.

Positives PCA


2.30
5.32
4.91

−13.13
...

 MISC Med indsættelse af europæiske fartøjer rykker Vestu-
nionen for første gang i centrum af europæisk sikker-
hed efter mange års debat om at lette USAs byrder ved
forsvaret af Europa.

Positives t-SNE

[
−37.77
−22.41

]
PER ”Piloten forsøgte at rette maskinen op – s̊a kunne jeg

ikke se mere, men pludselig var der gnister i luften,”
siger øjenvidnet Peter de Neef.

Positives t-SNE

[
−37.75
−22.36

]
PER ”Løfterne om bonus har jeg heller aldrig f̊aet svar p̊a,

hvor bare en undskyldning kunne have gjort under-
værker,” understreger Peter Freil.

Positives UMAP

[
−2.54
7.27

]
MISC Datoen for den dag i april, da han fik sin tro p̊a det

danske retssystem tilbage.

Positives UMAP

[
−2.07
7.17

]
LOC Roskilde Domkirke bliver 12. november rammen om den

første af en række koncerter, den norske sangerinde Sissel
Kyrkjebø giver i Danmark.

Table 6.21: Selected entity examples chosen for having high values in resulting dimensions. An
example consists of a sentence and an entity candidate – the example entity span is here visualized with
boldface words. The coordinate value which is extreme and motivated the inclusion of the example is
underlined.

Furthermore, a key quality of the representations is their contextualized nature; this is

shown to be present in the reduced dimensions, as multiple of these are correlated with

Page 67 of 89



Experiments and Discussion Technical University of Denmark

the length of the example sequence as shown in Figure 6.8.

Figure 6.8: Four selected reduced dimensions, the first (top left) from the full dataset
and the three others from the dataset only containing positives, visualized as a function
of the length of the sentence that the entity example appears in.

6.3.3 When the Model is Wrong

Analysing when the model is right or wrong may provide valuable insight into how the

classification decisions are made and how to improve this. For this reason, a confusion

matrix (Table 6.22) is constructed for the DaNE test set that shows predicted labels

against the true labels6.5.

6.5All confusion matrices in this section are for simplicity and nuance done on the word level and not
on entire entity span level. This means that these confusion matrices do not correspond exactly to the
reported precision and recall scores, as these were calculated on span level as explained in Section 4.1.1.

Page 68 of 89



Experiments and Discussion Technical University of Denmark

Predicted label

True label

LOC PER ORG MISC O

LOC 91 0 2 3 5
PER 0 307 2 3 5
ORG 23 11 154 12 21
MISC 0 0 16 114 29
O 5 0 8 14 9,197

Table 6.22: Predicted labels versus the true labels on the DaNE test set. Note that
this count is done on word level, so entities spanning multiple words appear multiple
times in the table.

From the table, there are two major sources of errors:

1. LOC is often erroneously predicted on ORG entities – but not the other way

around.

2. O is often predicted on true labels, especially on ORG and MISC. This results

in the relatively low recall of 81.18 % holding back performance compared to the

precision of 84.67 %.

Point 1 may have a relatively simple explanation: That many organizations are named

after a geographic location while locations more rarely adopt the name of an organi-

zation. Consider for instance the organization entity ”Bakken” in the (verbatim) test

example: ”Alle som én er en hyldest til Bakken.”.

The model predicts LOC, but while the amusement park, Bakken, would refer to the

physical location in another context, this sentence is about an homage to the tradition of

the park as an institution, and is as such marked as ORG. While the model is contextual,

meaning correctly predicting such entities is possible, examples with as little context as

this one requires a degree of very minute real-world knowledge currently not obtained

by DaLUKE. This error pattern also occurred with names of theatres, libraries and

municipalities.

Page 69 of 89



Experiments and Discussion Technical University of Denmark

Text: Nørrebro Bibliotek introducerede for et par år siden NU-bøgerne . . .
Truth: B-ORG I-ORG O O O O O O B-MISC . . .
Pred.: B-LOC I-LOC O O O O O O O . . .

Text: . . . Folkekongressen skal give præsidenten diktatoriske beføjelser .
Truth: . . . B-ORG O O O B-MISC O O
Pred.: . . . O O O O O O O

Text: . . . om Landsforeningen Ungbo har beg̊aet mandatsvig . . .
Truth: . . . O B-ORG I-ORG O O O . . .
Pred.: . . . O O B-ORG O O O . . .

Table 6.23: Example sentences where DaLUKE is wrong, including conflating an or-
ganization with its location, missing cased and adjective entities, and greedily selecting
a subspan instead of the full entity.

Point 2, the prevalence of false negatives (prediction case III, following Table 4.1), can

be a calibration problem, but is also, in our estimation, one of the most difficult parts of

this dataset, as the definition of NEs starts becoming quite murky. One common cause

is the model missing adjectives marked as MISC including ”borgerlig”, ”indremissionsk”

and ”olympisk”. The classification of these as named entities with the MISC label is

correct following CoNLL-2003 definition (see Section 3.2.3) but we speculate that this

might be a difference in language understanding between English and Danish as this

categorization, in our estimation, seems non-intuitive in Danish – in which adjectives

are also never capitalized.

In the missed organizations, two possible causes are found. Firstly, using a case-

sensitive tokenizer, which the da-BERT one is not [Bot19], might help some errors

such as ”Markedsudvalget” and ”Kulturministeriets”. Secondly, cases such as ”EFs

ministerr̊ad” with the annotation ”B-ORG I-ORG” are found. Here, the model only

predicts the first word as an organization and gets the entire entity wrong. As ”EFs”

might follow a pattern more common in the training data than ”EFs ministerr̊ad”, the

former has a higher estimated probability by the model and is greedily selected. This

tendency to predict subspans highlights a weakness of the method of greedily selecting

partially overlapping spans.

From this qualitative impression of the errors, a subset of which are shown in Ta-

ble 6.23, no smoking gun was found that problematizes this specific model. Rather,

most errors shown here are examples that genuinely are difficult applications of language

knowledge. To get more insight into the prediction patterns of DaLUKE specifically,

the NER predictions are compared with those of other Danish NER algorithms.

Initially, the similarity of other model predictions and those of DaLUKE are mea-

Page 70 of 89



Experiments and Discussion Technical University of Denmark

sured using the proportion of words for which the prediction is the same, shown at

Table 6.3.3. Surprisingly, the most similar models are the DaCy models, using the

multilingual RoBERTa base and large behind the hood [Ene21], and the multilingual

BERT from NERDA, while da-BERT, on which DaLUKE is based, follows behind.

Model Same prediction as DaLUKE [ %]
DaNLP da-BERT 97.86
NERDA m-BERT 98.44
NERDA Ælæctra 97.70
DaCy medium 98.68
DaCy large 98.76
DaNLP spaCy 97.65
DaNLP Flair 96.37
Polyglot 93.45
daner 95.90

Table 6.24: Co-prediction frequencies between DaLUKE and other Danish NER algo-
rithms on the DaLUKE testing dataset performed on the word level.

Compared to the da-BERT predictions, the biggest difference is the higher amount of

positive predictions as seen at Table 6.3.3. DaNLP da-BERT was not fine-tuned for

MISC, so this difference is natural, but DaLUKE also discovers more organizations.

DaLUKE also predicts location more rarely and outperforms da-BERT on these (F1:

87.0 % vs. 83.9 %).

da-BERT predictions

DaLUKE predictions

LOC PER ORG MISC O
LOC 114 0 0 – 5
PER 0 310 5 – 3
ORG 10 9 143 – 21
MISC 1 0 4 – 141
O 4 3 6 – 9244

Table 6.25: da-BERT predictions vs. DaLUKE predictions.

From examining the examples where the models differ, DaLUKE seems to employ the

additional learned knowledge to better disambiguate between similar classes and use

context to discover NEs, see Table 6.26.

Page 71 of 89



Experiments and Discussion Technical University of Denmark

Text: . . . redegørelsen i det udenrigspolitiske nævn . . .
Truth: . . . O O B-ORG I-ORG I-ORG . . .
DaLUKE pred.: . . . O O B-ORG I-ORG I-ORG . . .
da-BERT pred.: . . . O O O O O . . .

Text: ”Ih, hvor jeg glæder mig til et lille glas,” lød det fra Lykke
Truth: O O O O O O O O O O O O B-PER
DaLUKE pred.: O O O O O O O O O O O O B-PER
da-BERT pred.: O O O O O O O O O O O O O

Text: Rapporten . . . er bestilt og betalt af Københavns Amtsr̊ad . . .
Truth: O . . . O O O O O B-ORG I-ORG . . .
DaLUKE pred.: O . . . O O O O O B-ORG I-ORG . . .
da-BERT pred.: O . . . O O O O O B-LOC I-LOC . . .

Table 6.26: Examples of DaLUKE improvements compared to da-BERT include spot-
ting tricky NEs, and correctly identifying correlated. This is possibly accomplished by
the knowledge additions allowing the model to use more information from the context.

The same comparison is made to DaCy large which achieves higher performance than

DaLUKE – especially driven by improvements in organization and miscellaneous classes.

Here, the biggest differences lie in cases where the models have to discern between these

two classes and the null class, seen at Table 6.3.3.

DaCy large predictions

DaLUKE predictions

LOC PER ORG MISC O
LOC 108 0 2 1 8
PER 0 309 6 3 0
ORG 9 3 154 5 12
MISC 0 1 3 120 22
O 8 4 8 27 9210

Table 6.27: DaCy large predictions vs. DaLUKE predictions.

Examples where DaCy large is right, but DaLUKE wrong, are shown at Table 6.28. The

initial explanation of DaCy large’s edge over DaLUKE was the use of a BERT large-

sized transformer, adding flexibility to the model, theoretically allowing higher-level

language features to be learned compared to the base size model used by DaLUKE.

From the examples, more reasons are identified. One cause is the use of the case-

sensitive byte-pair encoding tokenizer of RoBERTa [Con+20] which we speculate helps

to discover more entities, relating to the high recall of DaCy (83.7 % versus the 81.2 %

of DaLUKE). Another interesting pattern lies in the strength of the multilingual model

used by DaCy correctly predicting entities in foreign languages.

Page 72 of 89



Experiments and Discussion Technical University of Denmark

Text: . . . opus VIII der hedder
Truth: . . . B-MISC I-MISC O O
DaLUKE pred.: . . . B-MISC I-MISC O O
DaCy pred.: . . . O O O O

(continued)

Il Cimento dell’Armonia e dell’Invenzione
B-MISC I-MISC I-MISC I-MISC I-MISC
O O O O O
B-MISC I-MISC I-MISC I-MISC I-MISC

Text: Der ligger fire skodder plus en hel Camel
Truth: O O O O O O O B-MISC
DaLUKE pred.: O O O O O O O O
DaCy pred.: O O O O O O O B-MISC

Text: Den modtog han i øvrigt Kulturministeriets
Truth: O O O O O B-ORG
DaLUKE pred.: O O O O O O
DaCy pred.: O O O O O B-ORG

(continued)

børnebogspris for i 1990
O O O O
O O O O
O O O O

Table 6.28: Examples from the DaNE test set where DaCy large gives the correct
predictions and DaLUKE gives the wrong predictions.

6.4 Future Work

We see promise in this approach of lightly sprinkling some explicit knowledge on top

of the model-fitting approach for languages such as Danish. The results are, in our

estimation, solid and encouraging. DaLUKE did not, however, sweep away the classic

language modeling approach and was intercepted for the NER crown by the larger model

presented in DaCy. Some parts of the pretraining approach also seemed misguided

on the small dataset. To further understand the DaLUKE performance, results from

other downstream tasks than NER would be of great interest, including coreference

resolution on the Dacoref dataset [KL04; Bro+21] or dependency parsing on the Danish

Dependency Treebank [Kro03]. It would also improve insight to pretrain DaLUKE with

a subset of the corpus left out as a testing set. Some further changes which have the

potential to improve performance are proposed.

Page 73 of 89



Experiments and Discussion Technical University of Denmark

Data As in any deep learning project, we end up crying out for more data. Multiple of

the pretraining experiments presented in Section 6.1 show signs of the model overfitting

to the limited Danish Wikipedia. An immediate idea is to include the Norweigan

Wikipedia as the primary language, bokm̊al, is syntactically, and vocabulary-wise similar

to Danish. There are some technical issues such as the choice of tokenizer and entity

modeling, as the same entity might be spelled differently in both languages. While the

Norwegian Wikipedia has 156M words6.6compared to the 81M of the Danish Wikipedia,

this might be too little to dramatically change the results.

A more impactful improvement could be found from our dataset augmentation idea,

though it did not improve results for the Danish Wikipedia. Much needed entirely new

LUKE pretraining datasets could be produced from raw text corpora by automatically

annotating them using pattern matching. Such lower standard annotations used to

achieve extra data might be necessary for continued improvement in low-resource lan-

guages such as Danish but should be used carefully and with an analysis of the trade-off

between quality and quantity of data. Other automatic annotators than simple pat-

tern matching might also be beneficial as the field of entity linking has been applied to

Wikipedia [BB21] including ready-to-use tools such as the Danish version of DBpedia

Spotlight [Dai+13]. It might hold that the quality of the entity annotations is not

all-important, in which case tools that link entire sentences or paragraphs to entities

without localizing them exactly might be used. The entity position IDs could then be

omitted. Here, Danish tools for explicit semantic analysis [NH17] could help.

The primary, open dataset in which we see promise for automated annotation is the

recently published Danish Gigaword corpus which includes documents that are more

diverse in domain and dialect than the Danish Wikipedia [Der+21].

Access to closed datasets such as news articles and internal documents could also be

a way to increase the available data. However, such documents are closed for a reason.

In most cases, suppliers of closed documents would have an interest in not risking that

these documents could be reverse engineered from the model. For this, methods such

as differential privacy [Gon+20] could play a role.

Finally, investigating biases in the pretraining dataset could provide insight into

why performance is better on some categories than others (see Table 5.3). Obviously,

Wikipedia does not categorize articles by the four CoNLL-2003 categories, but many

articles are still categorized into larger groups that could light a path to putting all or

most articles into the CoNLL boxes.

6.6Norwegian Wikipedia statistics: https://no.wikipedia.org/wiki/Spesial:Statistikk

Page 74 of 89

https://no.wikipedia.org/wiki/Spesial:Statistikk


Experiments and Discussion Technical University of Denmark

Modeling Motivated by the impressive success of DaCy, the most direct model im-

provement is to use the multilingual RoBERTa [Con+20] instead of the Danish BERT

[Bot19]. The Danish BERT has previously been criticized for being under-trained

[Der+21; NV20] and for not being case-sensitive. Furthermore, there exists a large ver-

sion of the multilingual RoBERTa, and, finally, we speculate that our pretraining task

will help the multilingual model catch up to possibly missing Danish-specific knowl-

edge. The large version will, however, require more computational resources or more

patience.

Further improvement might be found if the LUKE approach is not followed di-

rectly. The LUKE knowledge-enhancement is very subtle and requires any hierarchical

and relational modeling of knowledge to be learned implicitly from the flat world of

entities stored in the vocabulary. A unification of models that use subtle knowledge-

enhancement in pretraining and those that use explicit knowledge bases might be bene-

ficial for Danish. An approach to this that maintains a flexible, general model, might be

introducing additional tokens coding for knowledge as input for the entity embeddings.

We imagine a hierarchical token that uses the article classification of Wikipedia (see

Figure 6.9) to code the type of token to be beneficial in pretraining.

Figure 6.9: An example of categories included in Wikipedia articles. It is imagined that
these can be mined as additional, helpful annotations of entity types for the pretraining.

Ethics As with many applications of AI, there are significant ethical concerns. High-

performing language models capable of generating convincing text can be used for

automating the production of spam and other deceitful internet content. For instance,

OpenAI claimed that GPT-2 [Rad+19] generated problematic articles so easily that

its release was considerably delayed6.7. Incorporating knowledge in language models

might allow bad actors better control over this production, requiring monitoring of the

potentially harmful consequences of effective NLP.

6.7https://www.technologyreview.com/2019/08/29/133218/openai-released-its-fake-

news-ai-gpt-2/. Visited June 26, 20201.

Page 75 of 89

https://www.technologyreview.com/2019/08/29/133218/openai-released-its-fake-news-ai-gpt-2/
https://www.technologyreview.com/2019/08/29/133218/openai-released-its-fake-news-ai-gpt-2/


Experiments and Discussion Technical University of Denmark

Another concern is that of unintended offensive or politically charged language.

To acquire the amounts of data necessary to train effective language models, many

practitioners, including BotXO for da-BERT [Bot19], have turned to uncurated web

scrapes. As the internet has no shortage of hate, the models will naturally learn these

parts of language. Such behaviour has for instance been observed with GPT-3 [Bro+20],

the largest language model in existence as of writing6.8. One solution could be the use

of NLP methods such as hate speech detection, as done for Danish by Sigurbergsson

and Derczynski [SD20]. However, these problems of language models can also be seen

in a larger AI safety context as an alignment problem [Tay+20]: How do we guarantee

that the implicit values of these automated systems are compatible with our engineering

goals of benefiting society?

6.8https://www.technologyreview.com/2020/10/23/1011116/chatbot-gpt3-openai-

facebook-google-safety-fix-racist-sexist-language-ai/. Visited June 26, 2021.

Page 76 of 89

https://www.technologyreview.com/2020/10/23/1011116/chatbot-gpt3-openai-facebook-google-safety-fix-racist-sexist-language-ai/
https://www.technologyreview.com/2020/10/23/1011116/chatbot-gpt3-openai-facebook-google-safety-fix-racist-sexist-language-ai/


7. Conclusion

We present DaLUKE, a Danish version of the LUKE [Yam+20], a general-purpose

language model for producing contextualized word and entity representations. It is

fine-tuned on three Danish named entity recognition (NER) datasets and achieves

competitive performance on DaNE, the primary Danish NER dataset. Many Dan-

ish NER results are reproduced, revealing a group of close top contenders that includes

DaLUKE. On raw scores, DaLUKE is superseded by DaCy large [Ene21], but beats

DaNLP’s fine-tuned version of BotXO’s Danish BERT [Bro+21; Bot19], suggesting

that the knowledge-based additions of Yamada et al. [Yam+20] do indeed raise the

performance of the model. Furthermore, both released LUKE models (large and base)

are fine-tuned on the CoNLL-2003 NER dataset [TD03], and the results reported by

Yamada et al. are reproduced.

Both the general-purpose pretrained and the fine-tuned DaLUKE are made pub-

licly available under the open source MIT license along with a pip installable package,

daluke, that allows for easy use and integration into existing code bases.

Using DaNE as a benchmark, it was found that entity-aware self-attention and

a complete entity vocabulary help learning, and that especially transfer learning is

important to the performance of the model. Without transfer learning, the model

seems to overfit to the pretraining dataset, which is a concern with small datasets in

low-resource languages like Danish. Our data-engineering, however, gave an example

of how changes in pretraining datasets may have unintuitive consequences and should

be applied carefully.

The NER fine-tuning, used as a benchmark for language understanding, was found to

be sensitive to hyperparameters and random number generator seeds, requiring broader

analysis of Danish language models. However, it was found that the representation

geometry of DaLUKE exhibits semantic language structure and that the model suc-

cessfully can include context and knowledge in language predictions.

All in all, the knowledge augmenting methods of DaLUKE show positive results

with several paths worth exploring to further empower low resource natural language

processing.

Page 77 of 89



Bibliography

[Akb+19] Alan Akbik et al. “FLAIR: An easy-to-use framework for state-of-the-art NLP”. In:

NAACL 2019, 2019 Annual Conference of the North American Chapter of the Associa-

tion for Computational Linguistics (Demonstrations). 2019, pp. 54–59.

[Al-+15] Rami Al-Rfou, Vivek Kulkarni, Bryan Perozzi, and Steven Skiena. “Polyglot-NER: Mas-

sive Multilingual Named Entity Recognition”. In: Proceedings of the 2015 SIAM Inter-

national Conference on Data Mining, Vancouver, British Columbia, Canada, April 30 -

May 2, 2015 (Apr. 2015).

[Bat18] David S. Batista. “Named-Entity evaluation metrics based on entity-level”. In: David

S. Batista Blog (May 9, 2018). url: http://www.davidsbatista.net/blog/2018/05/

09/Named_Entity_Evaluation/ (visited on 06/19/2021).

[BB21] Robin Brochier and Frédéric Béchet. “Predicting Links on Wikipedia with Anchor Text

Information”. In: CoRR abs/2105.11734 (2021). arXiv: 2105.11734. url: https://

arxiv.org/abs/2105.11734.

[Bir20] Victor Elkjær Birk. “Investigating state-of-the-art approaches to knowledge enhancing

deep learning based language models”. MA thesis. Kongens Lyngby: Technical University

of Denmark, 2020.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-

ence and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. isbn: 0387310738.

[Bot19] BotXO. BotXO has trained the most advanced Danish BERT model to date. 2019. url:

https://www.botxo.ai/en/blog/danish-bert-model/ (visited on 02/28/2021).

[Bro+18] Per B. Brockhoff et al. “Introduction to Statistics at DTU”. In: (2018). url: https:

//02323.compute.dtu.dk/enotes/book-IntroStatistics.

[Bro+20] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: (2020). arXiv:

2005.14165 [cs.CL].

[Bro+21] Amalie Brogaard Pauli, Maria Barrett, Ophélie Lacroix, and Rasmus Hvingelby. “DaNLP:

An open-source toolkit for Danish Natural Language Processing”. In: Proceedings of the

23rd Nordic Conference on Computational Linguistics (NoDaLiDa 2021). 2021.

[Cona] PyTorch Contributors.Automatic Mixed Precision Package - torch.cuda.amp. url: https:

//pytorch.org/docs/stable/amp.html (visited on 05/27/2021).

[Conb] PyTorch Contributors. CrossEntropyLoss. url: https://pytorch.org/docs/stable/

generated/torch.nn.CrossEntropyLoss.html (visited on 06/09/2021).

Page 78 of 89

http://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/
http://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/
https://arxiv.org/abs/2105.11734
https://arxiv.org/abs/2105.11734
https://arxiv.org/abs/2105.11734
https://www.botxo.ai/en/blog/danish-bert-model/
https://02323.compute.dtu.dk/enotes/book-IntroStatistics
https://02323.compute.dtu.dk/enotes/book-IntroStatistics
https://arxiv.org/abs/2005.14165
https://pytorch.org/docs/stable/amp.html
https://pytorch.org/docs/stable/amp.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html


Bibliography Technical University of Denmark

[Conc] PyTorch Contributors. Reproducability. url: https://pytorch.org/docs/stable/

notes/randomness.html (visited on 06/09/2021).

[Con+20] Alexis Conneau et al. Unsupervised Cross-lingual Representation Learning at Scale. 2020.

arXiv: 1911.02116 [cs.CL].

[Con21] Papers With Code Contributors. Papers With Code: Named Entity Recognition. 2021.

url: https://paperswithcode.com/task/named-entity-recognition-ner (visited

on 06/02/2021).

[Dai+13] Joachim Daiber, Max Jakob, Chris Hokamp, and Pablo N. Mendes. “Improving Ef-

ficiency and Accuracy in Multilingual Entity Extraction”. In: Proceedings of the 9th

International Conference on Semantic Systems (I-Semantics). 2013.

[Der+21] Leon Derczynski et al. “The Danish Gigaword Corpus”. In: Proceedings of the 23rd

Nordic Conference on Computational Linguistics. NEALT, 2021.

[Dev+19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding”. In: Proceed-

ings of the 2019 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-

pers). Minneapolis, Minnesota: Association for Computational Linguistics, June 2019,

pp. 4171–4186. doi: 10 . 18653 / v1 / N19 - 1423. url: https : / / www . aclweb . org /

anthology/N19-1423.

[DFB14] Leon Derczynski, Camilla Vilhelmsen Field, and Kenneth S. Bøgh. “DKIE: Open Source

Information Extraction for Danish”. In: Proceedings of the Demonstrations at the 14th

Conference of the European Chapter of the Association for Computational Linguistics.

Gothenburg, Sweden: Association for Computational Linguistics, Apr. 2014, pp. 61–64.

doi: 10.3115/v1/E14-2016. url: https://www.aclweb.org/anthology/E14-2016.

[Ene21] Kenneth Enevoldsen. “DaCy: A SpaCy NLP Pipeline for Danish”. In: 2021.

[Fou04] The Apache Software Foundation. Apache License, Version 2.0. 2004. url: https:

//www.apache.org/licenses/LICENSE-2.0.html (visited on 06/11/2021).

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.

deeplearningbook.org. MIT Press, 2016.

[Gon+20] Maoguo Gong et al. “Preserving differential privacy in deep neural networks with relevance-

based adaptive noise imposition”. In: Neural Networks 125 (2020), pp. 131–141. issn:

0893-6080. doi: https://doi.org/10.1016/j.neunet.2020.02.001. url: https:

//www.sciencedirect.com/science/article/pii/S0893608020300460.

[Gra+18] Edouard Grave et al. “Learning Word Vectors for 157 Languages”. In: Proceedings of

the Eleventh International Conference on Language Resources and Evaluation (LREC

2018). Miyazaki, Japan: European Language Resources Association (ELRA), May 2018.

url: https://www.aclweb.org/anthology/L18-1550.

Page 79 of 89

https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
https://arxiv.org/abs/1911.02116
https://paperswithcode.com/task/named-entity-recognition-ner
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.3115/v1/E14-2016
https://www.aclweb.org/anthology/E14-2016
https://www.apache.org/licenses/LICENSE-2.0.html
https://www.apache.org/licenses/LICENSE-2.0.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1016/j.neunet.2020.02.001
https://www.sciencedirect.com/science/article/pii/S0893608020300460
https://www.sciencedirect.com/science/article/pii/S0893608020300460
https://www.aclweb.org/anthology/L18-1550


Bibliography Technical University of Denmark

[He+20] Bin He, Xin Jiang, Jinghui Xiao, and Qun Liu. “KgPLM: Knowledge-guided Language

Model Pre-training via Generative and Discriminative Learning”. In: CoRR abs/2012.03551

(2020). arXiv: 2012.03551. url: https://arxiv.org/abs/2012.03551.

[Hed+21] Michael A. Hedderich et al. A Survey on Recent Approaches for Natural Language Pro-

cessing in Low-Resource Scenarios. 2021. arXiv: 2010.12309 [cs.CL].

[HG20] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs). 2020. arXiv:

1606.08415 [cs.LG].

[Høj20] Malte Højmark-Bertelsen. “Ælæctra - A Step Towards More Efficient Danish Natural

Language Processing”. Bachelor’s Thesis. Cognitive Science, Aarhus University, 2020.

[Hon+20] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. spaCy:

Industrial-strength Natural Language Processing in Python. 2020. doi: 10.5281/zenodo.

1212303. url: https://doi.org/10.5281/zenodo.1212303.

[HR18] Jeremy Howard and Sebastian Ruder. “Universal Language Model Fine-tuning for Text

Classification”. In: Proceedings of the 56th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for

Computational Linguistics, July 2018, pp. 328–339. doi: 10.18653/v1/P18-1031. url:

https://www.aclweb.org/anthology/P18-1031.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-TermMemory”. In: Neural Com-

putation. MIT Press, 1997, pp. 1735–1780. url: https://direct.mit.edu/neco/

article/9/8/1735/6109/Long-Short-Term-Memory (visited on 06/18/2021).

[HTC20] Mengdi Huang, Chetan Tekur, and Michael Carilli. Introducing native PyTorch auto-

matic mixed precision for faster training on NVIDIA GPUs. July 2020. url: https:

//pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-

automatic-mixed-precision/ (visited on 05/28/2021).

[Hvi+20] Rasmus Hvingelby et al. “DaNE: A Named Entity Resource for Danish”. English.

In: Proceedings of the 12th Language Resources and Evaluation Conference. Marseille,

France: European Language Resources Association, May 2020, pp. 4597–4604. isbn:

979-10-95546-34-4. url: https://www.aclweb.org/anthology/2020.lrec-1.565.

[JMP15] Anders Johannsen, Hector Martinez, and Alonso Barbara Plank. “Universal Dependen-

cies for Danish”. In: TLT14. 2015.

[KH91] Anders Krogh and John A. Hertz. “A Simple Weight Decay Can Improve Generaliza-

tion”. In: Proceedings of the 4th International Conference on Neural Information Pro-

cessing Systems. NIPS’91. Denver, Colorado: Morgan Kaufmann Publishers Inc., 1991,

pp. 950–957. isbn: 1558602224.

[Kir+19] Andreas Kirkedal, Barbara Plank, Leon Derczynski, and Natalie Schluter. “The Lacunae

of Danish Natural Language Processing”. In: Proceedings of the 22nd Nordic Conference

on Computational Linguistics. Turku, Finland: Linköping University Electronic Press,

Sept. 2019, pp. 356–362. url: https://www.aclweb.org/anthology/W19-6141.

Page 80 of 89

https://arxiv.org/abs/2012.03551
https://arxiv.org/abs/2012.03551
https://arxiv.org/abs/2010.12309
https://arxiv.org/abs/1606.08415
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/P18-1031
https://www.aclweb.org/anthology/P18-1031
https://direct.mit.edu/neco/article/9/8/1735/6109/Long-Short-Term-Memory
https://direct.mit.edu/neco/article/9/8/1735/6109/Long-Short-Term-Memory
https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/
https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/
https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/
https://www.aclweb.org/anthology/2020.lrec-1.565
https://www.aclweb.org/anthology/W19-6141


Bibliography Technical University of Denmark

[KL04] M.T. Kromann and S.K. Lynge. Copenhagen Dependency Treebank. 2004. url: https://

github.com/mbkromann/copenhagen-dependency-treebank (visited on 06/24/2021).

[Kle11] Joel F. Klein. Amdahl’s Law. Mar. 2011. url: https://demonstrations.wolfram.

com/AmdahlsLaw/ (visited on 06/11/2021).

[KN20] Lars Kjeldgaard and Lukas Nielsen. “NERDA”. In: GitHub, 2020. url: https : / /

github.com/ebanalyse/NERDA.

[Kro03] Matthias Trautner Kromann. “The Danish Dependency Treebank and the DTAG tree-

bank tool”. In: In Proceedings of the Second Workshop on Treebanks and Linguistic

Theories (TLT 2003. 2003, pp. 14–15.

[Lau17] Jon Launchbury. DARPA Perspective on AI. 2017. url: https://www.darpa.mil/

about-us/darpa-perspective-on-ai (visited on 05/20/2021).

[LBH15] Yann LeCun, Y. Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature 521 (May

2015), pp. 436–44. doi: 10.1038/nature14539.

[LH19] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. 2019. arXiv:

1711.05101 [cs.LG].

[Liu+19] Yinhan Liu et al. “RoBERTa: A Robustly Optimized BERT Pretraining Approach”. In:

2019. arXiv: 1907.11692 [cs.CL].

[Log+19] Robert Logan et al. “Barack’s Wife Hillary: Using Knowledge Graphs for Fact-Aware

Language Modeling”. In: Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics. Florence, Italy: Association for Computational Linguistics,

July 2019, pp. 5962–5971. doi: 10.18653/v1/P19-1598. url: https://www.aclweb.

org/anthology/P19-1598.

[Man+14] Christopher D. Manning et al. “The Stanford CoreNLP Natural Language Processing

Toolkit”. In: Association for Computational Linguistics (ACL) System Demonstrations.

2014, pp. 55–60. url: http://www.aclweb.org/anthology/P/P14/P14-5010.

[Mar+13] Mónica Marrero et al. “Named Entity Recognition: Fallacies, challenges and opportu-

nities”. In: Computer Standards and Interfaces 35.5 (2013), pp. 482–489. issn: 0920-

5489. doi: https://doi.org/10.1016/j.csi.2012.09.004. url: https://www.

sciencedirect.com/science/article/pii/S0920548912001080.

[McI+18] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. “UMAP: Uniform

Manifold Approximation and Projection”. In: The Journal of Open Source Software 3.29

(2018), p. 861.

[MH08] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”. In:

Journal of Machine Learning Research 9 (2008), pp. 2579–2605. url: http://www.

jmlr.org/papers/v9/vandermaaten08a.html.

[MHM20] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approxi-

mation and Projection for Dimension Reduction. 2020. arXiv: 1802.03426 [stat.ML].

Page 81 of 89

https://github.com/mbkromann/copenhagen-dependency-treebank
https://github.com/mbkromann/copenhagen-dependency-treebank
https://demonstrations.wolfram.com/AmdahlsLaw/
https://demonstrations.wolfram.com/AmdahlsLaw/
https://github.com/ebanalyse/NERDA
https://github.com/ebanalyse/NERDA
https://www.darpa.mil/about-us/darpa-perspective-on-ai
https://www.darpa.mil/about-us/darpa-perspective-on-ai
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/P19-1598
https://www.aclweb.org/anthology/P19-1598
https://www.aclweb.org/anthology/P19-1598
http://www.aclweb.org/anthology/P/P14/P14-5010
https://doi.org/https://doi.org/10.1016/j.csi.2012.09.004
https://www.sciencedirect.com/science/article/pii/S0920548912001080
https://www.sciencedirect.com/science/article/pii/S0920548912001080
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/1802.03426


Bibliography Technical University of Denmark

[MIT] MIT. The MIT License (MIT). url: https://mit-license.org/ (visited on 05/29/2021).

[Nak18] Hiroki Nakayama. seqeval: A Python framework for sequence labeling evaluation. Soft-

ware available from https://github.com/chakki-works/seqeval. 2018. url: https://

github.com/chakki-works/seqeval.

[NH17] Finn Årup Nielsen and Lars Kai Hansen. “Open semantic analysis: The case of word

level semantics in Danish”. English. In: Proceedings of 8th Language and Technology

Conference. 8th Language and Technology Conference , LTC 2017 ; Conference date:

17-11-2017 Through 19-11-2017. 2017.

[Nie21] Finn Årup Nielsen. Awesome Danish: A curated list of awesome resources for Danish

language technology. 2021. url: https://github.com/fnielsen/awesome-danish/

blob/master/README.md (visited on 06/11/2021).

[NKA98] Ole Norling-Christensen, Britt-Katrin Keson, and Jørg Asmussen. PAROLE-DK and

ePAROLE: Morphosyntactically Annotated Danish Language Corpus. 1998.

[NV20] Lukas Christian Nielsen and Sebastian Lindegaard Veile. “Automatic Text Summariza-

tion For Danish Using BERT”. Master’s Thesis. IT University of Copenhagen, 2020.

[OMK18] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. “A Survey of the Usages

of Deep Learning in Natural Language Processing”. In: CoRR abs/1807.10854 (2018).

arXiv: 1807.10854. url: http://arxiv.org/abs/1807.10854.

[Pan+17] Xiaoman Pan et al. “Cross-lingual Name Tagging and Linking for 282 Languages”.

In: Proceedings of the 55th Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers). Vancouver, Canada: Association for Computational

Linguistics, July 2017, pp. 1946–1958. doi: 10.18653/v1/P17- 1178. url: https:

//www.aclweb.org/anthology/P17-1178.

[Ped+11] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: Journal of ma-

chine learning research 12.Oct (2011), pp. 2825–2830.

[Pet+19] Matthew E. Peters et al. “Knowledge Enhanced Contextual Word Representations”.

In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language Process-

ing (EMNLP-IJCNLP). Hong Kong, China: Association for Computational Linguistics,

Nov. 2019, pp. 43–54. doi: 10.18653/v1/D19-1005. url: https://www.aclweb.org/

anthology/D19-1005.

[Pla19] Barbara Plank. “Neural Cross-Lingual Transfer and Limited Annotated Data for Named

Entity Recognition in Danish”. In: Proceedings of the 22nd Nordic Conference on Com-

putational Linguistics. Turku, Finland: Linköping University Electronic Press, Sept.

2019, pp. 370–375. url: https://www.aclweb.org/anthology/W19-6143.

[Rad+18] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. “Improving lan-

guage understanding with unsupervised learning”. In: (2018). url: https : / / cdn .

openai.com/research-covers/language-unsupervised/language_understanding_

paper.pdf (visited on 06/24/2021).

Page 82 of 89

https://mit-license.org/
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://github.com/fnielsen/awesome-danish/blob/master/README.md
https://github.com/fnielsen/awesome-danish/blob/master/README.md
https://arxiv.org/abs/1807.10854
http://arxiv.org/abs/1807.10854
https://doi.org/10.18653/v1/P17-1178
https://www.aclweb.org/anthology/P17-1178
https://www.aclweb.org/anthology/P17-1178
https://doi.org/10.18653/v1/D19-1005
https://www.aclweb.org/anthology/D19-1005
https://www.aclweb.org/anthology/D19-1005
https://www.aclweb.org/anthology/W19-6143
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf


Bibliography Technical University of Denmark

[Rad+19] Alec Radford et al. “Language Models are Unsupervised Multitask Learners”. In: 2019.

[Raj19] Bharat S Raj. Understanding BERT: Is it a Game Changer in NLP? 2019. url: https:

//towardsdatascience.com/understanding-bert-is-it-a-game-changer-in-

nlp-7cca943cf3ad (visited on 06/24/2021).

[RLC19] Afshin Rahimi, Yuan Li, and Trevor Cohn. “Massively Multilingual Transfer for NER”.

In: Proceedings of the 57th Annual Meeting of the Association for Computational Lin-

guistics. Florence, Italy: Association for Computational Linguistics, July 2019, pp. 151–

164. url: https://www.aclweb.org/anthology/P19-1015.

[RM95] Lance A. Ramshaw and Mitchell P. Marcus. “Text Chunking using Transformation-

Based Learning”. In: CoRR cmp-lg/9505040 (1995). url: http://arxiv.org/abs/cmp-

lg/9505040.

[RN09] Stuart J. Russell and Peter Norvig. Artificial Intelligence: a modern approach. 3rd ed.

Pearson, 2009.

[Ros+20] Corby Rosset et al. “Knowledge-Aware Language Model Pretraining”. In: CoRR abs/2007.00655

(2020). arXiv: 2007.00655. url: https://arxiv.org/abs/2007.00655.

[Rud21] Sebastian Ruder. NLP-progress: Named Enitty Recognition. 2021. url: http://nlpprogress.

com/english/named_entity_recognition.html (visited on 06/02/2021).

[SD20] Gudbjartur Ingi Sigurbergsson and Leon Derczynski. “Offensive Language and Hate

Speech Detection for Danish”. English. In: Proceedings of the 12th Language Resources

and Evaluation Conference. Marseille, France: European Language Resources Associa-

tion, May 2020, pp. 3498–3508. isbn: 979-10-95546-34-4. url: https://www.aclweb.

org/anthology/2020.lrec-1.430.

[SHB16] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural Machine Translation of

Rare Words with Subword Units”. In: Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany:

Association for Computational Linguistics, Aug. 2016, pp. 1715–1725. doi: 10.18653/

v1/P16-1162. url: https://www.aclweb.org/anthology/P16-1162.

[SM18] Mohammad Golam Sohrab and Makoto Miwa. “Deep Exhaustive Model for Nested

Named Entity Recognition”. In: Proceedings of the 2018 Confer- ence on Empirical

Methods in Natural Language Processing. 2018, pp. 2843–2849. url: https://www.

aclweb.org/anthology/D18-1309.pdf (visited on 05/30/2021).

[SP97] M. Schuster and K.K. Paliwal. “Bidirectional recurrent neural networks”. In: IEEE

Transactions on Signal Processing 45.11 (1997), pp. 2673–2681. doi: 10.1109/78.

650093.

[Tay+20] Jessica Taylor, Eliezer Yudkowsky, Patrick LaVictoire, and Andrew Critch. “Alignment

for Advanced Machine Learning Systems”. In: 2020.

Page 83 of 89

https://towardsdatascience.com/understanding-bert-is-it-a-game-changer-in-nlp-7cca943cf3ad
https://towardsdatascience.com/understanding-bert-is-it-a-game-changer-in-nlp-7cca943cf3ad
https://towardsdatascience.com/understanding-bert-is-it-a-game-changer-in-nlp-7cca943cf3ad
https://www.aclweb.org/anthology/P19-1015
http://arxiv.org/abs/cmp-lg/9505040
http://arxiv.org/abs/cmp-lg/9505040
https://arxiv.org/abs/2007.00655
https://arxiv.org/abs/2007.00655
http://nlpprogress.com/english/named_entity_recognition.html
http://nlpprogress.com/english/named_entity_recognition.html
https://www.aclweb.org/anthology/2020.lrec-1.430
https://www.aclweb.org/anthology/2020.lrec-1.430
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/D18-1309.pdf
https://www.aclweb.org/anthology/D18-1309.pdf
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093


Bibliography Technical University of Denmark

[TD03] Erik F. Tjong Kim Sang and Fien De Meulder. “Introduction to the CoNLL-2003 Shared

Task: Language-Independent Named Entity Recognition”. In: Proceedings of the Seventh

Conference on Natural Language Learning at HLT-NAACL 2003. 2003, pp. 142–147.

url: https://www.aclweb.org/anthology/W03-0419.

[Vas+17] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762 (2017).

arXiv: 1706.03762. url: http://arxiv.org/abs/1706.03762.

[Wan+18] Alex Wang et al. “GLUE: A Multi-Task Benchmark and Analysis Platform for Natural

Language Understanding”. In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP:

Analyzing and Interpreting Neural Networks for NLP. Brussels, Belgium: Association for

Computational Linguistics, Nov. 2018, pp. 353–355. doi: 10.18653/v1/W18-5446. url:

https://www.aclweb.org/anthology/W18-5446.

[Wan+20] Ruize Wang et al. “K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters”.

In: CoRR abs/2002.01808 (2020). arXiv: 2002.01808. url: https://arxiv.org/abs/

2002.01808.

[Wan+21] Xiaozhi Wang et al. “KEPLER: A Unified Model for Knowledge Embedding and Pre-

trained Language Representation”. In: Transactions of the Association for Computa-

tional Linguistics 9 (Mar. 2021), pp. 176–194. issn: 2307-387X. doi: 10.1162/tacl_a_

00360. eprint: https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl\_a\

_00360/1894315/tacl\_a\_00360.pdf. url: https://doi.org/10.1162/tacl%5C_a%

5C_00360.

[Wik21] Wikipedia Contributors. Named-entity recognition — Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/w/index.php?title=Named-entity_recognition&

oldid=1020618016. [Online; accessed 1-June-2021]. 2021.

[Wu+16] Yonghui Wu et al. “Google’s Neural Machine Translation System: Bridging the Gap be-

tween Human and Machine Translation”. In: CoRR abs/1609.08144 (2016). url: http:

//arxiv.org/abs/1609.08144.

[Xio+19] Wenhan Xiong, Jingfei Du, William Yang Wang, and Veselin Stoyanov. Pretrained

Encyclopedia: Weakly Supervised Knowledge-Pretrained Language Model. 2019. arXiv:

1912.09637 [cs.CL].

[Yam+20] Ikuya Yamada et al. “LUKE: Deep Contextualized Entity Representations with Entity-

aware Self-attention”. In: Proceedings of the 2020 Conference on Empirical Methods in

Natural Language Processing (EMNLP). Online: Association for Computational Lin-

guistics, Nov. 2020, pp. 6442–6454. doi: 10.18653/v1/2020.emnlp-main.523. url:

https://www.aclweb.org/anthology/2020.emnlp-main.523.

[Zha+19] Zhengyan Zhang et al. “ERNIE: Enhanced Language Representation with Informative

Entities”. In: Proceedings of ACL 2019. 2019.

Page 84 of 89

https://www.aclweb.org/anthology/W03-0419
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/W18-5446
https://www.aclweb.org/anthology/W18-5446
https://arxiv.org/abs/2002.01808
https://arxiv.org/abs/2002.01808
https://arxiv.org/abs/2002.01808
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1162/tacl_a_00360
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl\_a\_00360/1894315/tacl\_a\_00360.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl\_a\_00360/1894315/tacl\_a\_00360.pdf
https://doi.org/10.1162/tacl%5C_a%5C_00360
https://doi.org/10.1162/tacl%5C_a%5C_00360
https://en.wikipedia.org/w/index.php?title=Named-entity_recognition&oldid=1020618016
https://en.wikipedia.org/w/index.php?title=Named-entity_recognition&oldid=1020618016
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1912.09637
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://www.aclweb.org/anthology/2020.emnlp-main.523


A. Result Details

A.1 Experiment: No Weight Fixing in Pretraining

This experiment was conducted as an ablation study on the locking of da-BERT weights.

All hyperparameters are the same as in the baseline experiment, described in Section

6.1.3, with the exception that the weights from da-BERT were unlocked for the entire

pretraining.

Model Top k accuracy [ %] k = 1 k = 3 k = 5 k = 10 k = 25 k = 50

Baseline
Masked words 24.4 31.2 34.6 39.9 47.7 53.7
Masked entities 37.7 48.7 53.6 60.3 68.7 75.0

Table A.1: The top k accuracy of the model with no parameter fixing in the 50’th and
last epoch.

Figure A.1: Development of masked language and masked entities when all weights are
unlocked for the entire pretraining.

Page 85 of 89



Appendix Technical University of Denmark

Model
F1 [ %] Precision [ %] Recall [ %]

Avg. LOC PER ORG MISC Avg. Avg.

No weight fixing 81.8 87.9 93.8 73.3 68.7 85.2 78.7

Table A.2: The fine-tuning results of the weight unlocking pretraining experiment.

A.2 Fine-tuning Hyperparameter Search Results

Batch size Learning rate Weight decay Dropout Loss weight F1 [%] Precision Recall
8 1·10−5 0.01 0.025 Yes 73.06 62.82 87.29
8 1·10−5 0.01 0.025 No 73.53 62.87 88.54
8 1·10−5 0.01 0.1 Yes 73.52 63.17 87.92
8 1·10−5 0.01 0.1 No 71.39 60.00 88.12
8 1·10−5 0.05 0.025 Yes 72.87 62.54 87.29
8 1·10−5 0.05 0.025 No 67.77 56.07 85.62
8 1·10−5 0.05 0.1 Yes 71.44 60.46 87.29
8 1·10−5 0.05 0.1 No 71.91 61.45 86.67
8 5·10−5 0.01 0.025 Yes 83.08 77.14 90.00
8 5·10−5 0.01 0.025 No 85.35 80.82 90.42
8 5·10−5 0.01 0.1 Yes 84.96 80.45 90.00
8 5·10−5 0.01 0.1 No 31.53 19.86 76.46
8 5·10−5 0.05 0.025 Yes 84.00 79.41 89.17
8 5·10−5 0.05 0.025 No 84.24 77.78 91.88
8 5·10−5 0.05 0.1 Yes 84.65 79.74 90.21
8 5·10−5 0.05 0.1 No 85.35 80.82 90.42
16 1·10−5 0.01 0.025 Yes 65.29 52.76 85.62
16 1·10−5 0.01 0.025 No 63.91 51.12 85.21
16 1·10−5 0.01 0.1 Yes 63.33 50.24 85.62
16 1·10−5 0.01 0.1 No 62.57 49.57 84.79
16 1·10−5 0.05 0.025 Yes 63.73 50.61 86.04
16 1·10−5 0.05 0.025 No 63.63 50.55 85.83
16 1·10−5 0.05 0.1 Yes 64.13 51.11 86.04
16 1·10−5 0.05 0.1 No 63.06 49.70 86.25
16 5·10−5 0.01 0.025 Yes 84.83 79.10 91.46
16 5·10−5 0.01 0.025 No 83.72 78.26 90.00
16 5·10−5 0.01 0.1 Yes 82.66 76.88 89.38
16 5·10−5 0.01 0.1 No 29.21 18.08 76.04
16 5·10−5 0.05 0.025 Yes 83.67 77.25 91.25
16 5·10−5 0.05 0.025 No 83.60 76.70 91.88
16 5·10−5 0.05 0.1 Yes 83.29 76.90 90.83
16 5·10−5 0.05 0.1 No 82.94 76.45 90.62

Table A.3: The results of hyperparameter search with micro average percentages for
the metrics reported on the DaNE test set.

Page 86 of 89



B. Additional Figures

B.1 Dimensionality Reduction

Figure B.1: t-SNE performed on a 100K random subset of the full∼ 1M possible entity
spans in the training set of DaNE.

Page 87 of 89



Appendix Technical University of Denmark

Figure B.2: UMAP performed on a 100K random subset of the full ∼ 1M possible
entity spans in the DaNE training set.

Figure B.3: Variance explained by principal components found by PCA on full DaNE
training dataset.

Page 88 of 89



Appendix Technical University of Denmark

Figure B.4: Variance explained by principal components found by PCA on the dataset
including positive labels.

Page 89 of 89


	Introduction
	The Project

	Theory and State of the Art
	Named Entity Recognition
	Embeddings, Tokenization, and the Transformer
	Deep Natural Language Processing in Danish
	Deep, Knowledge-enhanced NLP
	Static, Separate Knowledge Graphs
	Pretraining Augmentations

	LUKE
	Architecture
	Pretraining
	Fine-tuning for Named Entity Recognition


	Data
	Entity-annotated Danish Wikipedia
	Entity Augmentations

	Named Entity Recognition Benchmarks
	Danish Named Entity Recognition Datasets
	CoNLL-2003
	Annotation Schemes: What Do The Tags Mean?


	Methods
	Benchmarking Named Entity Recognition
	Evaluation of Named Entity Recognition
	Fine-tuning English LUKE
	Off-the-shelf, Danish models

	DaLUKE
	Pretraining Methodology and Hyperparameters
	Fine-tuning DaLUKE for Named Entity Recognition
	Implementation Details and Open Source Software


	Results
	English LUKE Reproduction
	Pretraining of DaLUKE
	Danish Named Entity Recognition
	Main Benchmark: Our Results and Reproduction
	Additional Datasets


	Experiments and Discussion
	What Is Going on in the Pretraining?
	The Parameter Population
	Effect of More Pretraining
	Baseline
	Entity-aware Self-attention
	Dataset Augmentation
	Impact of Danish BERT
	Entity Vocabulary Size
	Summary

	Fine-tuning Performance
	Stability of LUKE Fine-tuning
	Class-weighted Loss
	Feature Usage

	Predictions: What Is Learned?
	Masked Language Predictions
	DaLUKE Representations: The NER Geometry
	When the Model is Wrong

	Future Work

	Conclusion
	Bibliography
	Result Details
	Experiment: No Weight Fixing in Pretraining
	Fine-tuning Hyperparameter Search Results

	Additional Figures
	Dimensionality Reduction


